Home
Class 10
MATHS
If a, b, c, x, y, z are real quantities,...

If a, b, c, x, y, z are real quantities, and `(a+b+c)^2=3(bc+ca+ab-x^2-y^2-z^2)`, then prove that a=b=c and x=0, y=0,z=0.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

Show that |a b c a+2x b+2y c+2z x y z|=0

Show that |a b c a+2x b+2y c+2z x y z|=0

If x=b-c+a, y=c-a+b, z=a-b+c , then prove that (b-a) x + (c-b)y +(a-c)z=0

if (x)/(a^(2)-b^(2))=(y)/(b^(2)-c^(2))=(z)/(c^(2)-a^(2)) , then prove that x+y+z=0.