Home
Class 12
MATHS
If x!=0,y!=0,z!=0 and |[1+x,1,1],[1+y,1+...

If `x!=0,y!=0,z!=0` and `|[1+x,1,1],[1+y,1+2y,1],[1+z,1+z,1+3z]|=0`, then `x^(-1)+y^(-1)+z^(-1)` is equal to a.1 b.-1 c.-3 d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If x!=0,y!=0,z!=0 and det[[1+x,1,11+y,1+2y,11+z,1+z,1+3z]]=0, then x^(-1)+y^(-1)+z^(-1) is equal to a.1b.1c.-3d none of these

if x ne 0 , y ne 0 ,z ne 0 " and " |{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,1+3z):}|=0 then x^(-1) +y^(-1) +z^(-1) is equal to

if x ne 0 , y ne 0 ,z ne 0 " and " |{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,1+3z):}|=0 then x^(-1) +y^(-1) +z^(-1) is equal to

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2

If x, y, z are all different and not equal to zero and |{:(1+x,,1,,1),(1,,1+y,,1),(1,,1,,1+z):}| = 0 then the value of x^(-1) + y^(-1) + z^(-1) is equal to

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a. 1 b. 2 c. -1 d. 2

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a. 1 b. 2 c. -1 d. 2

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a. 1 b. 2 c. -1 d. 2

If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove that x y z=-1 .