Home
Class 12
MATHS
lim(n->oo)(x^n)/(n !)...

`lim_(n->oo)(x^n)/(n !)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)sin(x/2^n)/(x/2^n)

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(n->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

Let f(x)=lim_(m->oo){lim_(n->oo)cos^(2m)(n !pix)}, where x in Rdot Then the range of f(x)

If f(x)=lim_(n->oo)n(x^(1/n)-1),then for x >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

The value of lim_(n->oo) n^(1/n)

lim_(n to oo)(n!)/((n+1)!-n!)

Evaluate: lim_(n->oo)(4^n+5^n)^(1/n)

lim_(n->oo) nsin(1/n)