Home
Class 9
MATHS
if {9^n*3^2*(3^(-n/2)^(-2))-27^n}/(3^(3m...

if `{9^n*3^2*(3^(-n/2)^(-2))-27^n}/(3^(3m)*2^3)=1/27` then prove that `m-n=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (9^n*3^2*(3^(-n/2))^(-2)-(27)^n)/(3^(3m)*2^3)=1/(27), Prove that m-n=1.

If (9^nx3^2x(3^(-n/2))^(-2)-(27)^n)/(3^(3m)x2^3)=1/(27), Prove that m-n=1.

If (9^n\ xx\ 3^2\ xx\ (3^(-n/2))^(-2)-\ 27^n)/(3^(3m)\ xx\ 2^3)=1/(27) , prove that m-n=1

If (9^n xx3^2xx(3^(n))-27^n)/(3^(3m)xx2^3)=1/27 , prove that m-n=1.

If (9^(n)xx3^(2)xx(3^(-n//2))^(-2)-(27)^(n))/(3^(3m)xx2^(3))=(1)/(27) , prove that m-n=1.

If (9^(n)x3^(2)x3^(n)-27^(n))/(3^(3m)x2^(3))=(1)/(27), prove that m-n=1

If (9^(n)xx3^(2)xx(3^(-n//2))^(-2)-(27)^(n))/(3^(3m)xx2^(3))=(1)/(27) , then find m-n .

If (9^(n+2)xx(3^(-(n)/(2)))^(-2)-27^(n))/(3^(3m)xx2^(3)xx10)=(1)/(27) prove

If (4^(n+1).2^n-8^n)/(2^(3m))=3/8 then prove that n+1=m