Home
Class 12
MATHS
If f(x)=|(a,-1,0), (ax,1,-1), (ax^2,ax,9...

If `f(x)=|(a,-1,0), (ax,1,-1), (ax^2,ax,9)|,` then `f(2x)-f(x)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|(a,-1,0),(ax,a,-1),(ax^2,ax,a)|, then f(2x)-f(x) equals

If f(x)=|(a,-1,0),(ax,a,-1),(ax^(2),ax,a)| then f(3x)-f(2x)=

If f(x)=|(a,-1,0),(ax,a,-1),(ax^(2),ax,a)| , then f(2x) - f(x) is not divisible a)x b)a c) 2a+3x d) x^2

If f(x) = |(a, -1, 0), (ax, a,-1 ) ,(ax^(2), ax, a)| , then f(2x)-f(x) is divisible by 1) a 2) b 3) c ,d ,e 4). none of these

If f(x)=|{:(a,-1,0),(ax,a,-1),(ax^2,ax,a):}| then using properties of determinants, find the value of f(2x)-f(x)

If f(x)=det[[a,-1,0ax,a,-1ax^(2),ax,a]], then f(2x)-f(x) is divisible by (a) a(b)b(c)c,d,e(d) none of these

If f(x) = {:|(a,-1,0),(ax,a,-1),(ax^2,ax,a)| , using properties of determinants, find the value of f(2x)-f(x)

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot