Home
Class 12
MATHS
In triangle ABC, if cosA+sinA-(2)/(cosB+...

In `triangle ABC`, if `cosA+sinA-(2)/(cosB+sinB)=0` then prove that triangle is isosceles right angled.

Text Solution

Verified by Experts

Given `(cosA+sinA)(cosB+sinB)=2`
`rArrcos(A-B)+sin(A+B)=2`
`rArr cos(A-B)=1,sin(A+B)=1`
`rArr A=B,A+B=(pi)/(2)`
`rArr C=(pi)/(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If a cos A = b cos B , prove that the Delta ABC is either isosceles or right angled.

"In a "DeltaABC, if(cosA)/a=(cosB)/b,"show that the triangle is isosceles".

Knowledge Check

  • In triangleABC , if cosA=sinB-cosC , then the triangle is

    A
    a right angled
    B
    an isosceles
    C
    an equilateral
    D
    a scalene
  • In triangle ABC, 2(bc cosA-ac cosB-ab cosC)=

    A
    `0`
    B
    `(a+b+c)`
    C
    `-3a^(2)+b^(2)+c^(2)`
    D
    `2(a^(2)+b^(2)+c^(2))`
  • If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

    A
    Equilateral
    B
    Isosceles
    C
    Right angled
    D
    Obtuse triangle
  • Similar Questions

    Explore conceptually related problems

    In any triangle ABC if 2cos B=(a)/(c), then the triangle is(A) Right angled (C) Isosceles (B) Equilateral (D) None of these

    triangleABC is an isosceles triangle with AC = BC. If AB^(2)= 2AC^(2) . Prove that triangle ABC is a right triangle.

    In a triangle ABC cosA+cosB+cosC<=k then k=

    In a DeltaABC , if cosB=(sinA)/(2sinC) , then the triangle is

    If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is