Home
Class 12
MATHS
If cos(alpha+beta)+sin(alpha-beta)=0 and...

If `cos(alpha+beta)+sin(alpha-beta)=0` and `tan beta ne1`, then find the value of `tan alpha`.

Text Solution

Verified by Experts

The correct Answer is:
`-1`

`cos alpha cos beta-sin alpha sin beta+sin alpha cos beta-cos alpha sin beta=0`
`rArr cos alpha(cos beta-sin beta)+sinalpha(cos beta-sibeta)=`
`rArr (cos beta-sin beta)(cos alpha+sin alpha)=0`
If `cos beta-sin beta=0`, then `tan beta=1`, which is not possible
`therefore sin alpha+cos alpha=0`
`therefore sin 3A=-59//72`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

cos(alpha+beta)+sin(alpha-beta)=0 and tan beta=(1)/(2009)

If coa(alpha+beta)+sin(alpha-beta)=0 and 2010tan beta+1=0 then tan alpha=

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta=(1)/(2008). Find tan alpha.

If cos(alpha+beta)+sin(alpha-beta)=0 and 2010tanbeta+1=0 then tan alpha is equal to

tan(alpha+beta)=(1)/(2),tan(alpha-beta)=(1)/(3), then find the value of tan2 alpha

If cos(alpha+beta)=(5)/(13) and cos(alpha-beta)=(4)/(5) then find the value of tan2 beta

If sin(alpha+beta)=(4)/(5), sin(alpha-beta)=(5)/(13) , find the value of tan 2alpha :

If 0<=alpha,beta<=90^(@) and tan(alpha+beta)=3 and tan(alpha-beta)=2 then value of sin2 alpha is

If sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2), where 0<=,beta<=(pi)/(2) ,then find the values of tan(alpha+2 beta) and tan(2 alpha+beta)

If 5tan alpha tan beta=3 , then find the value of (cos(alpha+beta))/(cos(alpha-beta))