Home
Class 12
MATHS
The maximum value of 1+sin(pi/4+theta)+2...

The maximum value of `1+sin(pi/4+theta)+2cos(pi/4-theta)` for real values of `theta` is

Text Solution

Verified by Experts

The correct Answer is:
`1+sqrt(5)`

` 1 + sin (( pi )/(4) + theta) + 2sin ((pi)/(4) - theta) `
`=1+sin((pi)/(4)+theta)+2cos((pi)/(2)-((pi)/(4)-theta))`
`=1+sin((pi)/(4)+theta)+2cos((pi)/(4)+theta)`
Hecne, the maximum value is `1+sqrt(3)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

The maximum value of 1+sin((pi)/(4) +theta) +2cos((pi)/(4) - theta) for all real values of theta is :

The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real value of theta is:

If A=sin^(2)theta+cos^(4)theta, then for all real values of theta

If sin(pi cos theta)=cos(pi sin theta), then of the value cos(theta+-(pi)/(4)) is

The maximum value of sin(theta+(pi)/(6))+cos(theta+(pi)/(6)) is attained at theta in(0,(pi)/(2))