Home
Class 12
MATHS
show that 2^(sin x)+2^(cos x)ge2^(1-(1)/...

show that `2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))`

Text Solution

AI Generated Solution

To show that \( 2^{\sin x} + 2^{\cos x} \geq 2^{1 - \frac{1}{\sqrt{2}}} \), we can utilize the Arithmetic Mean-Geometric Mean (AM-GM) inequality. Here’s a step-by-step solution: ### Step 1: Apply the AM-GM Inequality We start by applying the AM-GM inequality to the terms \( 2^{\sin x} \) and \( 2^{\cos x} \). \[ \frac{2^{\sin x} + 2^{\cos x}}{2} \geq \sqrt{2^{\sin x} \cdot 2^{\cos x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that 2^(sin x) + 2^(cos x) ge 2^(1-1/sqrt2) for all real x.

sin^(-1)x=cos^(-1)sqrt(1-x^(2))

cos[2sin^(-1)sqrt((1-x)/(2))]

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

int(2sin x)/((3+sin2x))dx is equal to (1)/(2)ln|(2+sin x-cos x)/(2-sin x+cos x)|-(1)/(sqrt(2))tan^(-1)((sin x+cos x)/(sqrt(2)))+c(1)/(2)ln|(2+sin x-cos x)/(2-sin x+cos x)|-(1)/(2sqrt(2))tan^(-1)((sin x+cos x)/(sqrt(2)))+c(1)/(4)ln|(2+sin x-cos x)/(2-sin x+cos x)|-(1)/(sqrt(2))tan^(-1)((sin x+cos x)/(sqrt(2)))+cnone of these