Home
Class 12
MATHS
In triangle ABC, prove that sin""(A)/(2)...

In triangle ABC, prove that `sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)le(1)/(8)` and hence, prove that `co sec ""(A)/(2)+co sec""(B)/(2)+co sec""(C)/(2)ge6`.

Text Solution

Verified by Experts

We know that is triangle ABC,
`cos A+cos B+cos Cle3//2`
Now, `cosA+cosB+cosC=1+4sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)`.
`therefore 1+4sin""(4)/(2)sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)le""(3)/(2)`
So, `sin""(A)/(2)(B)/(2)sin""(C)/(2)le(1)/(8)`
Using `AMgeGM`, we get
`(co sec((A)/(2))+co sec((B)/(2))+co sec((C)/(2)))/(3)ge(co sec ((A)/(2))co sec ((B)/(2))co sec((C)/(2)))^(1//3)`
`rArr co sec((A)/(2))+co sec((B)/(2))+co sec ((C)/(2))ge3((1)/(sin((A)/(2))sin((B)/(2))sin((C)/(2))))^(1//3)`
`rArr co sec((A)/(2))+co sec((B)/(2))+co sec((C)/(2))ge3(8)^(1//3)`
`rArr co sec((A)/(2))+co sec((B)/(2))+co sec((C)/(2))ge6`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Single)|100 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC , prove that sin(A/2)+sin(B/2)+sin(C/2)le(3)/(2) .

In triangle ABC, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))<=(3)/(2) Hence,deduce that cos((pi+A)/(4))cos((pi+B)/(4))cos((pi+C)/(4))<=(1)/(8)

In any triangle ABC, prove that: a cos((B+C)/(2))=(b+c)(sin A)/(2)

In a Delta ABC prove that cos((A+B)/(2))])=(sin C)/(2)

For any triangle ABC ,prove that (a+b)/(c)=(cos((A-B)/(2)))/(sin(C)/(2))

For any triangle ABC ,prove that (a-b)/(c)=(sin((A-B)/(2)))/(cos(C)/(2))

In any triangle ABC prove that: sin((B-C)/(2))=((b-c)/(a))(cos A)/(2)

For any triangle ABC, prove that (sin(B-C))/(2)=(b-c)/(a)((cos A)/(2))])

In any triangle ABC, prove that following: (a-b)(cos C)/(2)c sin((A-B)/(2))

In any Delta ABC, prove that :(a+b)/(c)=(cos((A-B)/(2)))/(sin((c)/(2)))