Home
Class 12
MATHS
If the angles alpha, beta, gamma of a tr...

If the angles `alpha, beta, gamma` of a triangle satisfy the relation,
`sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2)`, then
The measure of the smallest angle of the triangle is

A

`30^(@)`

B

`40^(@)`

C

`45^(@)`

D

`50^(@)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have `sin((alpha - beta)/(2)) + sin ((alpha - gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2)`
`therefore sin (((pi-(beta+gamma))-beta)/(2))+ sin (((pi-(gamma +beta))-gamma)/(2)) + sin((3pi-3(beta+gamma))/(2)) = (3)/(2)`
`therefore cos((2beta + gamma)/(2)) + cos((2gamma + beta)/(2)) - cos((3(beta+gamma))/(2)) = (3)/(2)`
`therefore 2cos ((3)/(4)(beta + gamma)) cos ((beta-gamma)/(4)) +1 - 2cos^(2)((3)/(4)(beta +gamma)) = (3)/(2)`
`therefore 4 cos^(2) ((3)/(4) (beta + gamma)) - 4cos((3)/(4) (beta + gamma)) cos ((beta-gamma)/(4)) +1 =0`...(1)
Above equation is quadratic in `cos((3)/(4)(beta +gamma))`
Since `cos((3)/(4)(beta+gamma))` is a real number,
Discriminant `D ge 0`
`therefore 16 cos^(2)((beta-gamma)/(4)) -16 ge 0`
`rArr cos ^(2)((beta -gamma)/(4)) ge 1`
`rArr cos^(2)((beta -gamma)/(4)) =1 `
`rArr beta = gamma `
From equation (1) for `beta = gamma`, we get
`[ 2 cos((3)/(4)(beta+gamma)) -1]^(2) =0`
`rArr 2cos""(3)/(4) (beta + gamma) = 1`
`rArr cos""(3)/(4) (beta +gamma) = (1)/(2)`
`rArr (3)/(4) (beta +gamma) = 60^(@)`
`therefore beta +gamma = 80^(@)`
`therefore alpha = 100^(@)`
`therefore beta = 40^(@), gamma = 40^(@)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Matrix Match Type )|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Numerical)|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))*sin((beta+gamma)/(2))*sin((gamma+alpha)/(2))

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))sin((beta+gamma)/(2))sin((gamma+alpha)/(2))

Knowledge Check

  • If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then Triangle is

    A
    acute angled
    B
    right angled but not isosceles
    C
    isosceles
    D
    isosceles right angled
  • The angles alpha , beta , gamma of a triangle satisfy the equations 2 sin alpha + 3 cos beta = 3sqrt(2) and 3sin beta + 2cos alpha = 1 . Then angle gamma equals

    A
    `150^(@)`
    B
    `120^(@)`
    C
    `60^(@)`
    D
    `30^(@)`
  • If alpha and beta are + ive acute angle satisfying the equation 3 sin^(2) alpha -2 sin^(2) beta =1 and 3 sin 2 alpha -2 sin 2 beta =0 , then alpha =2 beta=

    A
    `pi//2`
    B
    `2pi//3`
    C
    `pi`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    If a line makes angles alpha , beta ,gamma with coordinate axes , then sin ^2 alpha +sin^2 beta + sin^2 gamma ………

    If alpha,beta,gamma,in(0,(pi)/(2)), then prove that (si(alpha+beta+gamma))/(sin alpha+sin beta+sin gamma)<1

    det [[1,1,1sin alpha, no beta, no deltacos alpha, cos beta, cos delta]] = - 4sin ((alpha-beta) / (2)) sin ((beta-delta) / (2)) sin ((delta-alpha) / (2))

    If a line makes angles alpha, beta, gamma with the coordinate axes, prove that sin^2alpha+sin^2beta+sin^2gamma=2

    If a line makes angle alpha, beta and gamma with the axes respectively then sin^(2)alpha+sin^(2)beta+sin^(2)gamma=