Home
Class 12
MATHS
The maximum value of the expression 1/(s...

The maximum value of the expression `1/(sin^2theta+3sinthetacostheta+5cos^2theta)` is………

Text Solution

Verified by Experts

The correct Answer is:
2

`(1)/ ( 4 cos^(2) theta + 1 + (3)/(2) sin 2 theta) = (1)/(2[1+ cos 2 theta] + 1+ (3)/(2) sin 2theta) `
` " " = (1)/( 2cos 2theta + (3)/(2) sin 2 theta + 3)`
Now,
`" " - sqrt(2^(2) + ((3)/(2))^(2)) le 2 cos 2theta + (3)/(2) sin 2 theta le sqrt (2^(2) + ((3)/(2))^(2))`
or ` - (5)/(2) le 2 cos 2 theta + (3)/(2) sin 2 theta le (5)/(2)`
`rArr (1)/(2) le 2 cos 2 theta + (3)/(2) sin 2 theta + 3 le (11)/(2)`
`rArr (2)/(11) le (1)/( 2 cos 2 theta + (3)/(2) sin 2 theta + 3) le 2`
Hence, the maximum value is 2.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise JEE Main Previous Year|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of the expression (1)/(sin^(2)theta+3sinthetacostheta+5cos^(2)theta) is

The maximum value of the expression (1)/(sin^(2)theta+3sin theta cos theta+5cos^(2)theta) is

The maximum value of the expression (1)/(sin^(2)theta+3sin theta cos theta+5cos^(2)theta) is

The maximum value of the expression (1)/(sin^(2)theta+3sin theta cos theta+5cos^(2)theta)

The maximum vale of the expression (1)/(sin^(2)theta+3sin theta cos theta+5cos^(2)theta) is

The maximum value of the expression F(theta) = (1)/(sin^(2)theta +3sinthetacostheta +5cos^(2)theta) is ______________.

The value of the expression ((sin 3theta)/sin theta)^2-((cos3theta)/cos theta)^2=

Minimum value of the expression cos^(2)theta-(6sin theta cos theta)+3sin^(2)theta+2, is