Home
Class 12
MATHS
Solve cos 2x=|sin x|, x in (-pi/2, pi)....

Solve `cos 2x=|sin x|, x in (-pi/2, pi)`.

Text Solution

Verified by Experts

The correct Answer is:
`x=-pi/6, pi/6, (5pi)/6`

If `sin x gt 0`, then we have
`2 sin^(2)x+sin x -1 =0`
`rArr sin x=1/2`,
`:. x=pi/6, (5pi)/6`
If `sin x lt 0` then we have
`2sin^(2) x- sin x-1=0`
`rArr sinx=-1/2`
`:. x=-pi/6`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve cos2xgt|sinx|,x in(-(pi)/(2),pi)

Solve cos2x>|sin x|,x in((pi)/(2),pi)

Solve: cos 2x gt | sin x| x in [-pi,pi] .

If cos2x>|sin x| and x in(-(pi)/(2),pi) then x

Solve the equation 2 (cos x+cos 2x)+sin 2x (1+2 cos x)=2 sin x for x in [-pi, pi] .

The complete set of values of x, x in (-(pi)/(2), pi) satisfying the inequality cos 2x gt |sin x| is :

Solve |sin x+cos x|=|sin x|+|cos x|,x in[0,2 pi]

82.Solve for x, sin x+cos x=(pi)/(2)