Home
Class 12
MATHS
Solve cosec^(2)theta-cot^(2) theta=cos t...

Solve `cosec^(2)theta-cot^(2) theta=cos theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc^2 \theta - \cot^2 \theta = \cos \theta \), we can start by using the Pythagorean identity for cosecant and cotangent. ### Step 1: Use the Pythagorean identity Recall that: \[ \csc^2 \theta - \cot^2 \theta = 1 \] Thus, we can rewrite the equation: \[ 1 = \cos \theta \] ### Step 2: Solve for \( \theta \) The equation \( \cos \theta = 1 \) has solutions where: \[ \theta = 2n\pi \quad \text{for } n \in \mathbb{Z} \] This means that \( \theta \) can take values like \( 0, 2\pi, 4\pi, \ldots \) ### Step 3: Check for additional solutions Now, we need to check if there are any other solutions. We can also analyze the original equation: \[ \csc^2 \theta - \cot^2 \theta = \cos \theta \] Substituting the identities: \[ 1 = \cos \theta \] This confirms that the only solutions are indeed from \( \cos \theta = 1 \). ### Conclusion Thus, the final solution is: \[ \theta = 2n\pi \quad \text{for } n \in \mathbb{Z} \]

To solve the equation \( \csc^2 \theta - \cot^2 \theta = \cos \theta \), we can start by using the Pythagorean identity for cosecant and cotangent. ### Step 1: Use the Pythagorean identity Recall that: \[ \csc^2 \theta - \cot^2 \theta = 1 \] Thus, we can rewrite the equation: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

cosec^(2)theta-cot^(2)theta-1

cosec^(2)theta=1+cot^(2)theta

cosec^(4)theta+cot^(2)theta+cosec^(2)theta)"=

Prove that (cosec theta-cot theta)^2=(1-cos theta)/(1+cos theta)

cosec^2 theta - cot^2 theta = 1 +…..

For 0^@ 0^@< theta <90^@ के लिए , अगर 2cos^2 theta=3sin theta , है तो (cosec^2 theta- cot^2 theta+cos^2 theta) का मान है:

Solve: cot\ theta/2-cottheta=cosec\ theta/2

cosec^(6)theta-cot^(6)theta-3cot^(2)theta.cosec^(2)theta=?

If "cosec"^(2) theta + 2 cot^(2) theta=10 , then find the value of sin theta + cos theta when 0^(@) lt theta lt 90^(@)

If cosec theta + cot theta= p , cos theta = ?