Home
Class 12
MATHS
Solve log(|sin x|) (1+cos x)=2....

Solve `log_(|sin x|) (1+cos x)=2`.

Text Solution

Verified by Experts

The correct Answer is:
No solution

`log_(|sin x|) (1+cos x)=2`
`rArr 1+cos x=sin^(2) x`
`rArr 1+cos x=(1-cos x) (1+ cos x)`
`rArr 1+cos x =0` or `1-cos x=1`
`rArr cos x=-1` or `cos x=0`
`rArr sin x=0` or `|sin x|=1`
Both of these are not possible as base of logarithm cannot be either 0 or 1.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve log_(tan x)(2+4cos^(2)x)=2

Which one of the following values is not the solution of the equation log_(|sin x|)(|cos x|)+log_(|cosx|)(|sin x|)=2

Solve: log_(cosx) sin x + log_(sin x) cos x = 2 .

Solve: 1 + log_2 (sin x) + log_2 (sin 3x) gt 0 , 0 le x le 2pi .

Solve: (cos x)/(1-sin x)+(cos x)/(1+sin x)=4

Solve log(-x)=2log(x+1)

Solve log_(x)(x^(2)-1)<=0

Solve for x. log_(0.1) sin 2x +log_10 cos x = log_10 7 .

If: (log_(cos x) sin x) + (log_(sin x)cos x)=2 , then, in general, x=

The smallest positive x satisfying log_(cos x)sin x+log_(sin x)cos x=2 is :