Home
Class 12
MATHS
Solve sec theta-1=(sqrt(2)-1) tan theta....

Solve `sec theta-1=(sqrt(2)-1) tan theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec \theta - 1 = (\sqrt{2} - 1) \tan \theta \), we will follow these steps: ### Step 1: Rewrite the Trigonometric Functions We start by rewriting the secant and tangent functions in terms of sine and cosine: \[ \sec \theta = \frac{1}{\cos \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \] Substituting these into the equation gives: \[ \frac{1}{\cos \theta} - 1 = (\sqrt{2} - 1) \frac{\sin \theta}{\cos \theta} \] ### Step 2: Clear the Denominator Multiply both sides by \( \cos \theta \) (assuming \( \cos \theta \neq 0 \)): \[ 1 - \cos \theta = (\sqrt{2} - 1) \sin \theta \] ### Step 3: Rearrange the Equation Rearranging gives: \[ 1 - \cos \theta - (\sqrt{2} - 1) \sin \theta = 0 \] ### Step 4: Use the Identity for Cosine Using the identity \( \cos \theta = 1 - 2 \sin^2 \frac{\theta}{2} \), we can express \( 1 - \cos \theta \) as: \[ 1 - (1 - 2 \sin^2 \frac{\theta}{2}) = 2 \sin^2 \frac{\theta}{2} \] Substituting this into the equation gives: \[ 2 \sin^2 \frac{\theta}{2} - (\sqrt{2} - 1) \sin \theta = 0 \] ### Step 5: Substitute for Sine Using \( \sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \), we rewrite the equation: \[ 2 \sin^2 \frac{\theta}{2} - (\sqrt{2} - 1)(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}) = 0 \] Factoring out \( 2 \sin \frac{\theta}{2} \): \[ 2 \sin \frac{\theta}{2} \left( \sin \frac{\theta}{2} - (\sqrt{2} - 1) \cos \frac{\theta}{2} \right) = 0 \] ### Step 6: Solve the Factors This gives us two cases to solve: 1. \( \sin \frac{\theta}{2} = 0 \) 2. \( \sin \frac{\theta}{2} - (\sqrt{2} - 1) \cos \frac{\theta}{2} = 0 \) ### Step 7: Solve Case 1 For \( \sin \frac{\theta}{2} = 0 \): \[ \frac{\theta}{2} = n\pi \quad \Rightarrow \quad \theta = 2n\pi \quad (n \in \mathbb{Z}) \] ### Step 8: Solve Case 2 For \( \sin \frac{\theta}{2} = (\sqrt{2} - 1) \cos \frac{\theta}{2} \): Dividing both sides by \( \cos \frac{\theta}{2} \) (assuming \( \cos \frac{\theta}{2} \neq 0 \)): \[ \tan \frac{\theta}{2} = \sqrt{2} - 1 \] The angle whose tangent is \( \sqrt{2} - 1 \) is \( \frac{\pi}{8} \): \[ \frac{\theta}{2} = \frac{\pi}{8} + n\pi \quad \Rightarrow \quad \theta = \frac{\pi}{4} + 2n\pi \quad (n \in \mathbb{Z}) \] ### Final Solutions Combining both cases, the solutions for \( \theta \) are: 1. \( \theta = 2n\pi \) 2. \( \theta = \frac{\pi}{4} + 2n\pi \)

To solve the equation \( \sec \theta - 1 = (\sqrt{2} - 1) \tan \theta \), we will follow these steps: ### Step 1: Rewrite the Trigonometric Functions We start by rewriting the secant and tangent functions in terms of sine and cosine: \[ \sec \theta = \frac{1}{\cos \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \] Substituting these into the equation gives: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.5|5 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.6|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.3|9 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve sec theta+1=(2+sqrt(3))tan theta0

If ("sec" theta 1)- (sqrt(2)-1) "tan" theta, "then" theta =

Prove that (sec4 theta-1)/(sec2 theta-1)=(tan4 theta)/(tan theta)

Prove that: (sec8 theta-1)/(sec4 theta-1)=(tan8 theta)/(tan2 theta)

Solve tan theta+tan2 theta+sqrt(3)tan theta tan2 theta=sqrt(3)

If : tan theta - sqrt(2) cdot "sec" theta = sqrt(3) , then : theta =

If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

Prove: (tan theta)/(sec theta-1)=(tan theta+sec theta+1)/(tan theta+sec theta-1)

intsecx/(sqrt(sin(2x+theta)+sin theta))dx(AA x,theta in(0,(pi)/(2))) (A) sqrt(3(tan x sec theta+tan theta sec theta))+c (B) sqrt(2(tan x sec theta+tan theta sec theta))+c (C) sqrt(5(tan x sec theta-tan theta sec theta))+c (D) sqrt((tan x sec theta-tan theta sec theta))+c