Home
Class 12
MATHS
Solve tan x lt 2....

Solve `tan x lt 2`.

Text Solution

Verified by Experts

The correct Answer is:
`x in (n pi-pi/2, n pi+ tam^(-1) 2), n in Z`

We know that `tan x` is periodic with period `pi`. So, check the solution on the interval `(- pi/2, pi/2)`.

It is clear from figure
`tan x lt 2` when `-pi/2 lt x lt tan^(-1) 2`
General solution is
`npi -pi/2 lt x lt n pi + tan^(1-) 2, n in Z`
`rArr n in (n pi-pi/2, n pi + tan^(-1) 2), n in Z`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Multiple)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.8|4 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve tan x - tan^2 x gt 0and |2 sin x| lt 1 .

Solve 0 lt |x| lt 2

Solve tan x+tan 2x + sqrt3 tan x tan 2x= sqrt3

Solve tan x+tan 2x+tan 3x = tan x tan 2x tan 3x, x in [0, pi] .

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

Solve tan x+tan2x+sqrt(3)tan x tan2x=sqrt(3)

Solve tan x+tan2x+tan3x=tan x tan2x tan3x,x in[0,pi]

Solve the inequality: tan x lt 2

Solve : (1)/(x) lt (2)/(x-2)

Solve tan^(2)x-tan x<0