Home
Class 12
MATHS
If 0 le x le 2pi, then 2^(cosec^(2) x) ...

If `0 le x le 2pi`, then `2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2)`

A

is satisfied by exactly one value of y

B

is satisfied by exactly two value of x

C

is satisfied by x for which `cos x=0`

D

is satisfied by x for which `sin x=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2^{\csc^2 x} \sqrt{\frac{1}{2} y^2 - y + 1} \leq \sqrt{2} \) for \( 0 \leq x \leq 2\pi \), we will break it down step by step. ### Step 1: Analyze the inequality We start with the inequality: \[ 2^{\csc^2 x} \sqrt{\frac{1}{2} y^2 - y + 1} \leq \sqrt{2} \] ### Step 2: Simplify the expression We can rewrite \( \sqrt{2} \) as \( 2^{1/2} \). Thus, we can express the inequality as: \[ 2^{\csc^2 x} \sqrt{\frac{1}{2} y^2 - y + 1} \leq 2^{1/2} \] ### Step 3: Divide both sides by \( \sqrt{2} \) To simplify, we divide both sides by \( \sqrt{2} \): \[ 2^{\csc^2 x - \frac{1}{2}} \sqrt{\frac{1}{2} y^2 - y + 1} \leq 1 \] ### Step 4: Analyze \( 2^{\csc^2 x - \frac{1}{2}} \) Since \( 2^{\csc^2 x - \frac{1}{2}} \) is always positive, we can isolate \( \sqrt{\frac{1}{2} y^2 - y + 1} \): \[ \sqrt{\frac{1}{2} y^2 - y + 1} \leq 2^{\frac{1}{2} - \csc^2 x} \] ### Step 5: Square both sides Squaring both sides gives: \[ \frac{1}{2} y^2 - y + 1 \leq 2^{1 - 2\csc^2 x} \] ### Step 6: Analyze the right side The term \( 2^{1 - 2\csc^2 x} \) can vary depending on \( \csc^2 x \). Since \( \csc^2 x \geq 1 \) for \( x \in [0, 2\pi] \), we know: \[ 2^{1 - 2\csc^2 x} \leq 2^{1 - 2} = 2^{-1} = \frac{1}{2} \] ### Step 7: Set up the quadratic inequality Now we can set up the quadratic inequality: \[ \frac{1}{2} y^2 - y + 1 \leq \frac{1}{2} \] This simplifies to: \[ \frac{1}{2} y^2 - y + \frac{1}{2} \leq 0 \] Multiplying through by 2 gives: \[ y^2 - 2y + 1 \leq 0 \] This factors to: \[ (y - 1)^2 \leq 0 \] ### Step 8: Solve the quadratic inequality The only solution to \( (y - 1)^2 = 0 \) is: \[ y = 1 \] ### Step 9: Determine values of \( x \) Now, we need to find \( x \) such that \( \csc^2 x \) is defined. Since \( \csc^2 x = \frac{1}{\sin^2 x} \), we have: \[ \sin^2 x = 1 \implies \sin x = \pm 1 \] This occurs at: \[ x = \frac{\pi}{2}, \frac{3\pi}{2} \] ### Conclusion Thus, the solution to the inequality \( 2^{\csc^2 x} \sqrt{\frac{1}{2} y^2 - y + 1} \leq \sqrt{2} \) under the given conditions is: \[ y = 1 \quad \text{and} \quad x = \frac{\pi}{2}, \frac{3\pi}{2} \]

To solve the inequality \( 2^{\csc^2 x} \sqrt{\frac{1}{2} y^2 - y + 1} \leq \sqrt{2} \) for \( 0 \leq x \leq 2\pi \), we will break it down step by step. ### Step 1: Analyze the inequality We start with the inequality: \[ 2^{\csc^2 x} \sqrt{\frac{1}{2} y^2 - y + 1} \leq \sqrt{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercises (Matrix Match Type)|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

If 0 le x, y le 2 pi "and cos"x + "cos" y = -2, " then "cos" (x+y)=

If 1/sqrt(2) le x le 1 and sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x , then (A,B)=

CENGAGE-TRIGONOMETRIC EQUATIONS-Exercise (Multiple)
  1. Let tanx-tan^2x >0 and |2s inx|<1 . Then the intersection of which of ...

    Text Solution

    |

  2. If cos(x+pi/3)+cos x=a has real solutions, then number of integral val...

    Text Solution

    |

  3. If 0 le x le 2pi, then 2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2...

    Text Solution

    |

  4. If the equation sin^2 x-a sin x + b = 0 has only one solution in (0, p...

    Text Solution

    |

  5. If (cos e c^2theta-4)x^2+(cottheta+sqrt(3))x+cos^2(3pi)/2=0 holds true...

    Text Solution

    |

  6. If (sinalpha)x^2-2x+bgeq2, for all real values of xlt=1a n dalpha in (...

    Text Solution

    |

  7. The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (...

    Text Solution

    |

  8. If cos3theta=cos3alpha, then the value of sintheta can be given by +-s...

    Text Solution

    |

  9. Which of the following sets can be the subset of the general solution ...

    Text Solution

    |

  10. The values of x1 between 0 and 2pi , satisfying the equation cos3x+cos...

    Text Solution

    |

  11. Which of the following set of values of x satisfies the equation 2^((2...

    Text Solution

    |

  12. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  13. The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin thet...

    Text Solution

    |

  14. The solutions of the equation 1+(sin x - cos x)"sin" pi/4=2 "cos"^(2) ...

    Text Solution

    |

  15. If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy...

    Text Solution

    |

  16. The solutions of the system of equations sin x sin y=sqrt(3)/4, cos x ...

    Text Solution

    |

  17. Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)cos(a1+x)++1/(2^(n-1))cos(an+x)...

    Text Solution

    |

  18. The equation 2sin^3theta+(2lambda-3)sin^2theta-(3lambda+2)sintheta-2la...

    Text Solution

    |

  19. The system of equations tan x=a cot x, tan 2x=b cos y

    Text Solution

    |

  20. (cos^2 x+1/(cos^2 x))(1+tan^2 2 y)(3+sin 3 z)=4, then y can take value...

    Text Solution

    |