Home
Class 12
MATHS
Consider the cubic equation x^3-(1+cos t...

Consider the cubic equation `x^3-(1+cos theta+sin theta)x^2+(cos theta sin theta+cos theta+sin theta)x-sin theta. cos theta =0` Whose roots are `x_1, x_2 and x_3`

A

3

B

4

C

5

D

6

Text Solution

Verified by Experts

The correct Answer is:
C

Now if `1=sin theta`, we get `theta=pi//2`
If `1= cos theta`, then `theta=0, 2pi` and if `sin theta=cos theta`, we get `tan theta=1`.
therefore,
`theta=pi/4, (5pi)/4`
Therefore, the number of values of `theta` in `[0, 2pi]` is 5.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercises (Matrix Match Type)|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Numerical)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Multiple)|31 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

cosider the cubic equation : x^(3)-(1+cos theta+sin theta)x^(2)+(cos theta sin theta+cos theta+sin theta)x-sin theta cos theta=0 whose roots are x_(1),x_(2),x_(3) .The value of (x_(1))^(2)+(x_(2))^(2)+(x_(3))^(2) equals

(cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

8sin theta cos theta cos2 theta cos4 theta=sin x the x=

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

(1+cos theta+sin theta)/(1+cos theta-sin theta)=(1+sin theta)/(cos theta)

sin theta+sin2 theta+sin3 theta=1+cos theta+cos2 theta

Prove (cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

(1 + cos theta + sin theta) / (1 + cos theta-sin theta) = (1 + sin theta) / (cos theta)

8sin theta cos theta cos2 theta cos4 theta=sin x rArr x=

(sin theta-cos theta+1)/(sin theta+cos theta-1)=(1+sin theta)/(cos theta)

CENGAGE-TRIGONOMETRIC EQUATIONS-Exercise (Comprehension)
  1. Cosider the cubic equation : x^3-(1+costheta+sintheta)x^2+(costhetasin...

    Text Solution

    |

  2. Consider the cubic equation x^3-(1+cos theta+sin theta)x^2+(cos theta ...

    Text Solution

    |

  3. Consider the cubic equation x^3-(1+cos theta+sin theta)x^2+(cos theta ...

    Text Solution

    |

  4. Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{...

    Text Solution

    |

  5. Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{...

    Text Solution

    |

  6. Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{...

    Text Solution

    |

  7. Consider the system of equations sin x cos 2y=(a^(2)-1)^(2)+1, cos x...

    Text Solution

    |

  8. Consider the system of equations sin x cos 2y=(a^(2)-1)^(2)+1, cos x...

    Text Solution

    |

  9. Consider the system of equations sin x cos 2y=(a^(2)-1)^(2)+1, cos x...

    Text Solution

    |

  10. Cosider the equation int(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) The nu...

    Text Solution

    |

  11. Cosider the equation int(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) If x t...

    Text Solution

    |

  12. Cosider the equation int(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) If x t...

    Text Solution

    |

  13. Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 ...

    Text Solution

    |

  14. Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 ...

    Text Solution

    |

  15. Consider the system of equations x cos^(3) y+3x cos y sin^(2) y=14 ...

    Text Solution

    |

  16. Let S(1) be the set of all those solution of the equation (1+a) cos th...

    Text Solution

    |

  17. Let S(1) be the set of all those solution of the equation (1+a) cos th...

    Text Solution

    |

  18. All the permissible value of b ,a=sin(2x-b)if a=0 and x=S(2) is a subs...

    Text Solution

    |

  19. Let (b cos x)/(2 cos 2x-1)=(b + sin x)/((cos^(2) x-3 sin^(2) x) tan x)...

    Text Solution

    |

  20. Let (b cos x)/(2 cos 2x-1)=(b + sin x)/((cos^(2) x-3 sin^(2) x) tan x)...

    Text Solution

    |