Home
Class 12
MATHS
alpha, beta, gamma are real number satis...

`alpha, beta, gamma` are real number satisfying `alpha+beta+gamma=pi`. The minimum value of the given expression `sin alpha+sin beta+sin gamma` is

A

zero

B

`-3`

C

positive

D

negative

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( \sin \alpha + \sin \beta + \sin \gamma \) given that \( \alpha + \beta + \gamma = \pi \), we can follow these steps: ### Step 1: Use the property of sine We know that the sine function is periodic and has a maximum value of 1 and a minimum value of -1. However, we will analyze the expression under the constraint that \( \alpha + \beta + \gamma = \pi \). ### Step 2: Rewrite the expression Using the identity \( \gamma = \pi - (\alpha + \beta) \), we can rewrite the expression: \[ \sin \alpha + \sin \beta + \sin \gamma = \sin \alpha + \sin \beta + \sin(\pi - (\alpha + \beta)) \] Since \( \sin(\pi - x) = \sin x \), we have: \[ \sin \gamma = \sin(\alpha + \beta) \] Thus, the expression becomes: \[ \sin \alpha + \sin \beta + \sin(\alpha + \beta) \] ### Step 3: Analyze the range of the sine function The sine function is non-negative in the interval \( [0, \pi] \). Therefore, \( \sin \alpha \), \( \sin \beta \), and \( \sin(\alpha + \beta) \) are all non-negative as long as \( \alpha, \beta \) are in the range \( [0, \pi] \). ### Step 4: Find the minimum value To find the minimum value of \( \sin \alpha + \sin \beta + \sin \gamma \), we can consider the case when \( \alpha, \beta, \) and \( \gamma \) are all equal. If we set \( \alpha = \beta = \gamma = \frac{\pi}{3} \): \[ \sin \alpha = \sin \beta = \sin \gamma = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, \[ \sin \alpha + \sin \beta + \sin \gamma = 3 \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \] This is a positive value. ### Step 5: Consider the case when one angle approaches 0 If we take \( \alpha = 0 \), \( \beta = 0 \), and \( \gamma = \pi \): \[ \sin \alpha + \sin \beta + \sin \gamma = \sin(0) + \sin(0) + \sin(\pi) = 0 + 0 + 0 = 0 \] However, since we are looking for the minimum value of \( \sin \alpha + \sin \beta + \sin \gamma \) under the constraint that \( \alpha + \beta + \gamma = \pi \) and all angles are real, we can conclude that the expression can reach 0 but cannot go below it. ### Conclusion Thus, the minimum value of \( \sin \alpha + \sin \beta + \sin \gamma \) is \( 0 \). ### Final Answer The minimum value of \( \sin \alpha + \sin \beta + \sin \gamma \) is \( 0 \). ---

To find the minimum value of the expression \( \sin \alpha + \sin \beta + \sin \gamma \) given that \( \alpha + \beta + \gamma = \pi \), we can follow these steps: ### Step 1: Use the property of sine We know that the sine function is periodic and has a maximum value of 1 and a minimum value of -1. However, we will analyze the expression under the constraint that \( \alpha + \beta + \gamma = \pi \). ### Step 2: Rewrite the expression Using the identity \( \gamma = \pi - (\alpha + \beta) \), we can rewrite the expression: \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|519 Videos

Similar Questions

Explore conceptually related problems

If alpha + beta + gamma=pi, then the value of sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma is equal to

Let alpha, beta, gamma be the measures of angle such that sin alpha+sin beta+sin gamma ge 2 . Then the possible value of cos alpha + cos beta+cos gamma is

If (alpha+beta+gamma+delta)=pi then sum cos alpha cos beta-sum sin alpha sin beta=

If alpha+beta+gamma=0sin2 alpha+sin2 beta+sin2 gamma=lambda sin alpha sin beta sin gamma Find lambda.

If alpha + beta+gamma=pi , prove that sin^2 alpha + sin^ beta - sin^2 gamma = 2sinalpha sinbeta cosgamma

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

If alpha+gamma=2beta then the expression (sin alpha-sin gamma)/(cos gamma-cos alpha) simplifies to: