Home
Class 12
MATHS
Let alpha, beta, gamma be the measures o...

Let `alpha, beta, gamma` be the measures of angle such that `sin alpha+sin beta+sin gamma ge 2`. Then the possible value of `cos alpha + cos beta+cos gamma` is

A

3

B

`2.5`

C

`2.4`

D

2

Text Solution

Verified by Experts

The correct Answer is:
D

`sin alpha + sin beta + sin gamma ge 2`
or `Sigma sin alpha ge 2`
Squaring both sides, we get
`Sigma sin^(2)alpha + 2 Sigma sin alpha sin beta ge 4`
`rArr 3-Sigma cos^(2)alpha + 2Sigma sin alpha sin beta ge 4`
`rArr 2 Sigma sin alpha sin beta ge 1 1+Sigma cos^(2) alpha`
`rArr 2 Sigma (sin alpha sin beta + cos alpha cos beta) ge 1+(Sigma cos alpha)^(2)` (adding `2Sigma cos alpha cos beta` on both sides)
`rArr (cos alpha + cos beta + cos gamma)^(2)+1le 2[cos (alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)]le 6`
`rArr (cos alpha + cos beta + cos gamma)^(2) le 5`
`rArr (cos alpha + cos beta + cos gamma le sqrt(5)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|519 Videos

Similar Questions

Explore conceptually related problems

lfsin alpha + sin beta + sin gamma = 0 = cos alpha + cos beta + cos gamma then sum cos (alpha-beta) =

Suppose alpha ,beta , gamma in R are such that sin alpha, sin beta , sin gamma ne 0 and Delta = |{:(sin^(2) alpha , sin alpha cos alpha , cos^(2) alpha),(sin^(2) beta , sin beta cos beta , cos^(2) beta),(sin^(2) gamma , sin gamma cos gamma , cos^(2) gamma):}| then Delta cannot exceed

If (alpha+beta+gamma+delta)=pi then sum cos alpha cos beta-sum sin alpha sin beta=

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is

Let cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2 , then the value of cos alpha + cos beta + cos gamma is

If sin alpha, sin beta, sin gamma are in AP and cos alpha, cos beta, cos gamma are in GP, then the value of (cos^(2)alpha+cos^(2)gamma+4 cos alpha cos gamma-2 sin alpha sin gamma-2)/(1-2 sin^(2)beta) , where beta != (pi)/(4) , is equal to

cos alpha+cos beta+cos gamma=0sin alpha+sin beta+sin gamma=0 then the value of sin^(4)alpha+sin^(4)beta+sin^(4)gamma

If cos(alpha+beta)sin(gamma +delta) = cos(alpha-beta)sin(gamma-delta) , then the value of cotalpha*cotbeta.cotgamma is :

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)