Home
Class 12
MATHS
If alpha,beta,gamma are ccute angles and...

If `alpha,beta,gamma` are ccute angles and `costheta=sinbeta//sinalpha,cosvarphi=singammasinalphaa n dcos(theta-varphi)=sinbetasingamma` , then the value of `tan^2alpha-tan^2beta-tan^2gamma` is equal to `-1` (b) `0` (c) `1` (d) 2

A

`-1`

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

From the third relation, we get
`cos theta cos phi + sin theta sin phi = sin beta sin gamma`
`rArr sin^(2)theta sin^(2)phi=(cos theta cos phi - sin beta sin gamma)^(2)`
`rArr (1-(sin^(2)beta)/(sin^(2)alpha))(1-(sin^(2)gamma)/(sin^(2)alpha))=((sin beta sin gamma)/(sin^(2)alpha)-sin beta sin gamma)^(2)`
`rArr (sin^(2)alpha-sin^(2)beta)(sin^(2)alpha-sin^(2)gamma)=sin^(2)beta sin^(2)gamma(1-sin^(2)alpha)^(2)`
`rArr sin^(4)alpha(1-sin^(2)beta sin^(2)sin^(2)gamma)-sin^(2)alpha(sin^(2)beta + sin^(2)gamma-2 sin^(2)beta sin^(2)gamma)=0`
`therefore sin^(2)alpha=(sin^(2)beta + sin^(2)gamma -2sin^(2)beta sin^(2)gamma)/(1-sin^(2)beta si8n^(2)gamma)`
and `cos^(2)alpha=(1-sin^(2)beta-sin^(2)gamma + sin^(2)beta sin^(2)gamma)/(1-sin^(2)beta sin^(2)gamma)`
`rArr tan^(2)alpha=(sin^(2)beta -sin^(2)beta sin^(2)gamma+sin^(2)gamma-sin^(2)beta sin^(2)gamma)/(cos^(2)beta - sin^(2)gamma(1-sin^(2)beta))`
`=(sin^(2)beta cos^(2)gamma + cos^(2)beta sin^(2)gamma)/(cos^(2)beta cos^(2)gamma)`
`= tan^(2) bet + tan^(2) gamma`
`rArr tan^(2) alpha - tan^(2) beta ` - `tan^(2) gamma = 0`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|519 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are ccute angles and cos theta=sin beta/sin alpha,cos varphi=sin gamma sin alpha and cos(theta-varphi)=sin beta sin gamma, then the value of tan^(2)alpha-tan^(2)beta-tan^(2)gamma is equal to (a)-1(b)0 (c) 1(d)2

If alpha,beta,gamma are acute angle such that cos alpha=tan beta,cos beta=tan gamma and cos gamma=tan alpha then

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

If a tan alpha+sqrt(a^(2)-1)tan beta+sqrt(a^(2)+1)tan gamma=2a where a is a constant and alpha,beta and gamma are variable angles.Then the least value of tan^(2)alpha+tan^(2)beta+tan^(2)gamma is equal to

tan(alpha+beta)=(1)/(2),tan(alpha-beta)=(1)/(3), then find the value of tan2 alpha

If each of alpha beta and gamma is a positive acute angle such that sin(alpha+beta-gamma)=(1)/(2)cos(beta+gamma-alpha)=(1)/(2) and tan(gamma+alpha-beta)=1 find the values of alpha,beta and gamma