Home
Class 12
MATHS
A and B are positive acute angles satisf...

A and B are positive acute angles satisfying the equations
`3cos^(2)A+2cos^(2)B=4and (3sinA)/(sinB)=(2cosB)/(cosA), then A+2B` is equal to

A

`pi//4`

B

`pi//3`

C

`pi//6`

D

`pi//2`

Text Solution

Verified by Experts

The correct Answer is:
D

From the given relation, we have
`2 cos^(2) B-1=3(1-cos^(2)A)`
or `cos 2B = 3 sin^(2)A` …(1)
`(3 sin A)/(sin B)=(2 cos B)/(cos A)`
`rArr (3)/(2) sin 2A = sin 2B`
`rArr 3 sin 2A = 2 sin 2B` …(2)
Now cos (A + 2B)
`= cos A cos 2B - sin A sin 2B`
`= cos A(3 sin^(2)A)-sin A.(3)/(2)sin 2A`
`= 3 cos A sin^(2)A-3 sin^(2)A cos A = 0`
`therefore A+2B=90^(@)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|519 Videos

Similar Questions

Explore conceptually related problems

A and B are positive acute angles satisfying the equation 3cos^(2)A+2cos^(2)B=4(3sin A)/(sin B)=(2cos B)/(cos A) then A+2B is

If AandB are acute positive angles satisfying the equations 3sin^(2)A+2sin^(2)B=1 and 3sin2A-2sin2B=0, then A+2B is equal to (a) pi (b) (pi)/(2) (c) (pi)/(4) (d) (pi)/(6)

If A and B are acute positive angles satisfying the equations 3 "sin"^(2) A + 2"sin"^(2)B =1 " and " 3"sin"2A-2 "sin" 2B = 0, "then " A +2B =

If A and B are acute angles and sinA=cosB then A+B=

If A and B are acute angles such that sinA=sin^(2)B,2cos^(2)A=3cos^(2)B then B equal to

If sinA+sinB=sqrt3(cosB-cosA),then sin3A+sin3B=