Home
Class 12
MATHS
If u=(1+cos theta)(1+cos 2theta)-sin the...

If `u=(1+cos theta)(1+cos 2theta)-sin theta.sin 2theta, v=sin theta(1+cos 2theta)+sin 2theta(1+cos theta)`, then `u^(2)+v^(2)=`

A

`4(1+cos theta)(1+cos 2theta)`

B

`4(1+sin theta)(1+sin 2theta)`

C

`4(1-cos theta)(1-cos 2theta)`

D

`4(1-sin theta)(1-sin 2theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \( u^2 + v^2 \) where: \[ u = (1 + \cos \theta)(1 + \cos 2\theta) - \sin \theta \sin 2\theta \] \[ v = \sin \theta (1 + \cos 2\theta) + \sin 2\theta (1 + \cos \theta) \] ### Step 1: Expand \( u \) First, let's expand \( u \): \[ u = (1 + \cos \theta)(1 + \cos 2\theta) - \sin \theta \sin 2\theta \] Expanding the first part: \[ u = 1 + \cos 2\theta + \cos \theta + \cos \theta \cos 2\theta - \sin \theta \sin 2\theta \] Using the product-to-sum identities, we know: \[ \cos \theta \cos 2\theta - \sin \theta \sin 2\theta = \cos(\theta + 2\theta) = \cos 3\theta \] Thus, we can rewrite \( u \): \[ u = 1 + \cos 2\theta + \cos \theta + \cos 3\theta \] ### Step 2: Simplify \( u \) Now, we can combine like terms: \[ u = 1 + \cos \theta + \cos 2\theta + \cos 3\theta \] ### Step 3: Expand \( v \) Now let's expand \( v \): \[ v = \sin \theta (1 + \cos 2\theta) + \sin 2\theta (1 + \cos \theta) \] Expanding gives: \[ v = \sin \theta + \sin \theta \cos 2\theta + \sin 2\theta + \sin 2\theta \cos \theta \] Using the product-to-sum identities again, we have: \[ \sin \theta \cos 2\theta + \sin 2\theta \cos \theta = \frac{1}{2}(\sin(3\theta) + \sin(\theta)) \] Thus, we can rewrite \( v \): \[ v = \sin \theta + \sin 2\theta + \frac{1}{2}(\sin(3\theta) + \sin(\theta)) \] Combining terms gives: \[ v = \frac{3}{2}\sin \theta + \sin 2\theta + \frac{1}{2}\sin(3\theta) \] ### Step 4: Compute \( u^2 + v^2 \) Now we compute \( u^2 + v^2 \): \[ u^2 + v^2 = (1 + \cos \theta + \cos 2\theta + \cos 3\theta)^2 + \left(\frac{3}{2}\sin \theta + \sin 2\theta + \frac{1}{2}\sin(3\theta)\right)^2 \] Using the identity \( a^2 + b^2 = (a + b)^2 - 2ab \), we can simplify this further. ### Step 5: Final Expression After simplification, we find: \[ u^2 + v^2 = 4 \left( \cos^2 \frac{3\theta}{2} + \sin^2 \frac{3\theta}{2} \right) = 4 \] ### Final Answer Thus, the final answer is: \[ \boxed{4} \]

To solve the problem, we need to compute \( u^2 + v^2 \) where: \[ u = (1 + \cos \theta)(1 + \cos 2\theta) - \sin \theta \sin 2\theta \] \[ v = \sin \theta (1 + \cos 2\theta) + \sin 2\theta (1 + \cos \theta) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|519 Videos

Similar Questions

Explore conceptually related problems

(cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

2(cos theta+cos2 theta)+(1+2cos theta)sin2 theta=2sin theta

((sin theta+cos theta)^(2)-1)/(sin theta*cos theta)

(sin theta-cos theta+1)/(sin theta+cos theta-1)=(1+sin theta)/(cos theta)

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

sin theta+sin2 theta+sin3 theta=1+cos theta+cos2 theta

(1+cos theta+sin theta)/(1+cos theta-sin theta)=(1+sin theta)/(cos theta)

(1-sin theta)/(cos theta)-(cos theta)/(1+sin theta)=2tan theta

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta) =