Home
Class 12
MATHS
The value of expression of (alphatangamm...

The value of expression of `(alphatangamma+betacotgamma)(alphacotgamma+betatangamma)-4alphabetacot^2 2gamma` depends on `alpha` (b) `beta` (c) `gamma` (d) none of these

A

dependent on `alpha`

B

independent of `gamma`

C

dependent on `beta`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`(alpha tan gamma + beta cot gamma) (alpha cot gamma + beta tan gamma)-4alpha bet cot^(2)2gamma`
`=alpha^(2)+(tan^(2)gamma + cot^(2)gamma)alpha betas + beta^(2)-4 alpha beta (cos^(2)2gamma)/(sin^(2)2gamma)`
`= alpha^(2)+beta^(2)+alpha beta[((sin^(2)gamma)/(cos^(2)gamma)+(cos^(2)gamma)/(sin^(2)gamma))-(4(cos^(2)gamma-sin^(2)gamma)^(2))/(4sin^(2)gamma cos^(2)gamma)]`
`=alpha^(2)+beta^(2)+alpha beta [((sin^(4)gamma+cos^(4)gamma)-(cos^(4)gamma +sin^(4)gamma-2 sin^(2)gamma cos^(2)gamma))/(sin^(2)gamma cos^(2)gamma)]`
`=alpha^(2)+beta^(2)+2alpha beta =(alpha+beta)^(2)`, which is independent on `gamma` and dependent of `alpha, beta`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE|Exercise Solved Examples And Exercises|519 Videos

Similar Questions

Explore conceptually related problems

The value of expression of (alpha tan gamma+beta cot gamma)(alpha cot gamma+beta tan gamma)-4 alpha beta cot^(2)2 gamma depends on alpha(b)beta(c)gamma(d) none of these

The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) + cos^(2)alpha - 2cos alpha cos(beta + gamma)cos(alpha + beta + gamma) is

Determine the values of alpha ,beta , gamma when [{:( 0, 2beta, gamma),( alpha ,beta, -gamma),( alpha ,-beta, gamma):}] is orthogonal.

The minimum value of the expression sin alpha+sin beta+sin gamma, where alpha,beta,gamma are real numbers satisfying alpha+beta+gamma=pi is

If alpha,beta,gamma are such that alpha+beta+gamma=2alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+gamma^(4)

If alpha+beta+gamma=6,alpha^(2)+beta^(2)+gamma^(2)=14 and alpha^(3)+beta^(3)+gamma^(3)=36, then alpha^(4)+beta^(4)+gamma^(4)=

If [(0,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma)] is orthogonal, then find the value of 2alpha^(2)+6beta^(2)+3gamma^(2).