Home
Class 12
MATHS
The number of distinct real roots of the...

The number of distinct real roots of the equation `sqrt(sin x)-(1)/(sqrt(sin x))=cos x("where" 0le x le 2pi)` is

A

1

B

2

C

3

D

more than 3

Text Solution

Verified by Experts

The correct Answer is:
B

`sqrt(sin x) - (1)/(sqrt(sin x))=cos x`
Squaring, `sin x-2+(1)/(sin x)=cos^(2)x`
`rArr sin x -2+(1)/(sin x)=cos^(2)x`
`rArr sin x-3 sin x +1 -sin^(3)x`
`rArr sin^(3)x+sin^(2)x-3 sin x + 1 =0`
`rArr (sin^(2)x+2 sin x-1)(sin x-1) =0`
`rArr sin x=1, sin x =-1 pm sqrt(2)`
`rArr x = pi//2, x=pi-sin^(-1)(-1+sqrt(2))` as (cos x must be lt 0)
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real roots of the equation sin pi x=x^(2)-x+(5)/(4) is

The number of non zero roots of the equation sqrt(sin x)=cos^(-1)(cos x) in (0,2 pi)

The number of distinct real roots of the equation, |(cos x, sin x , sin x ),(sin x , cos x , sin x),(sinx , sin x , cos x )|=0 in the interval [-pi/4,pi/4] is :

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

Number of solutions of the equation |cot x| = cot x + csc x , where 0 le x le 2pi is

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

The number of real roots of the equation x^(2)+x+3+2 sin x=0, x in [-pi,pi] , is

If x in(0,1), then greatest root of the equation sin2 pi x=sqrt(2)cos pi x is