Home
Class 12
MATHS
If log10(sin x) + log10(tany)+ log10 2=0...

If `log_10(sin x) + log_10(tany)+ log_10 2=0` and `coty= 2sqrt3 cos x,` then ordered pair `(x, y)` satisfying the equations simultaneously is(are) (A) `(pi/3 ,pi/3)` (B) `(pi/3 ,pi/6)` (C) `(pi/6 ,(2pi)/3)` (D) `(pi/3 , (7pi)/6)`

A

0

B

2

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
C

`log_(10)(sin x)+log_(10)(tan y) + log_(10)2=0`
`therefore 2 sin x tan y = 1` ….(1)
where sin x gt 0, tan y gt 0
`cot y=2sqrt(3)cos x` ….(2)
From (1) and (2), `2 sin x = 2sqrt(3)cos x`
`therefore tan x = sqrt(3)`
`rArr x = 2n pi + (pi)/(3), n in I` (as sin x gt 0)
From (1), `tan y =(1)/(sqrt(3)rArr y=n pi + (pi)/(6), n in I`
Hence, ordered pairs are `(pi//3, pi//6), (pi//3,7pi//6),(7pi//3,pi//6), (7pi//3,7pi//6)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10)(sin x)+log_(10)(tan y)+log_(10)2=0 and cot y=2sqrt(3)cos x, then ordered pair (x,y) satisfying the equations simultaneously is(are) (A) ((pi)/(3),(pi)/(3))(B)((pi)/(3),(pi)/(6))(C)((pi)/(6),(2 pi)/(3))(D)((pi)/(3),(7 pi)/(6))

cot^(-1)(-sqrt3)= (a) -pi/6 (b) (5pi)/6 (c) pi/3 (d) (2pi)/3

cos^-1 {-sin((5pi)/6)}= (A) - (5pi)/6 (B) (5pi)/6 (C) (2pi)/3 (D) -(2pi)/3

The least positive solution of cot(pi/(3sqrt3) sin2x)=sqrt3 lie (a) sin(0,pi/6) (b) (pi/9,pi/6) (c) (pi/12,pi/9) (d) (pi/3,pi/2)

The value of theta satisfying the given equation cos theta+sqrt(3)sin theta=2, is (A) (pi)/(3)(B)(5 pi)/(3)(C)(2 pi)/(3) (D) (4 pi)/(3)

For x in[-2 pi,3 pi] and y in R, the number of ordered pairs (x,y) satisfying the equation sqrt(3)sin x-cos x-3y^(2)+6y-5=0, is equal to

sin pi/3 = 2sin pi/6 cos pi/6

sin^(-1)((-1)/2) (a) pi/3 (b) -pi/3 (c) pi/6 (d) -pi/6

cos^(-1)((cos(7 pi))/(6)) is equal to ( a ) (7 pi)/(6) (B) (5 pi)/(6) (C) (pi)/(3)(D)(pi)/(6)

The smallest positive x satisfying the equation log_(cos x)sin x+log_(sin x)cos x=2 is (pi)/(2)(b)(pi)/(3)(c)(pi)/(4)(d)(pi)/(6)