Home
Class 12
MATHS
Solve : If (1)/(cos theta)+(1)/(cos 3the...

Solve : If `(1)/(cos theta)+(1)/(cos 3theta)=(1)/(cos 5theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{\cos \theta} + \frac{1}{\cos 3\theta} = \frac{1}{\cos 5\theta}, \] we will follow these steps: ### Step 1: Take LCM First, we will take the least common multiple (LCM) of the fractions on the left-hand side: \[ \frac{\cos 3\theta + \cos \theta \cdot \cos 5\theta}{\cos \theta \cdot \cos 3\theta} = \frac{1}{\cos 5\theta}. \] ### Step 2: Cross-Multiply Cross-multiplying gives us: \[ \cos 3\theta + \cos \theta \cdot \cos 5\theta = \cos \theta \cdot \cos 3\theta. \] ### Step 3: Rearranging the Equation Rearranging the equation, we have: \[ \cos 3\theta + \cos \theta \cdot \cos 5\theta - \cos \theta \cdot \cos 3\theta = 0. \] ### Step 4: Factor Out Common Terms We can factor out \(\cos \theta\): \[ \cos 3\theta + \cos \theta (\cos 5\theta - \cos 3\theta) = 0. \] ### Step 5: Set Each Factor to Zero This gives us two cases to consider: 1. \(\cos 3\theta = 0\) 2. \(\cos 5\theta - \cos 3\theta = 0\) ### Step 6: Solve \(\cos 3\theta = 0\) For the first case, \(\cos 3\theta = 0\): \[ 3\theta = \frac{(2n + 1)\pi}{2} \quad \text{where } n \in \mathbb{Z}. \] Thus, \[ \theta = \frac{(2n + 1)\pi}{6}. \] ### Step 7: Solve \(\cos 5\theta - \cos 3\theta = 0\) For the second case, we have \(\cos 5\theta = \cos 3\theta\). This can be solved using the identity: \[ \cos A = \cos B \implies A = 2k\pi \pm B \quad \text{where } k \in \mathbb{Z}. \] So we have: 1. \(5\theta = 3\theta + 2k\pi\) 2. \(5\theta = -3\theta + 2k\pi\) From the first equation: \[ 2\theta = 2k\pi \implies \theta = k\pi. \] From the second equation: \[ 8\theta = 2k\pi \implies \theta = \frac{k\pi}{4}. \] ### Step 8: Combine Solutions Combining all solutions, we have: 1. \(\theta = \frac{(2n + 1)\pi}{6}\) 2. \(\theta = k\pi\) 3. \(\theta = \frac{k\pi}{4}\) ### Final Solution Thus, the complete solution set is: \[ \theta = \frac{(2n + 1)\pi}{6}, \quad \theta = k\pi, \quad \theta = \frac{k\pi}{4} \quad \text{where } n, k \in \mathbb{Z}. \]

To solve the equation \[ \frac{1}{\cos \theta} + \frac{1}{\cos 3\theta} = \frac{1}{\cos 5\theta}, \] we will follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

(1-cos theta)(1+ cos theta)

(1-Cos theta)(1+ Cos theta) =

(sin theta)/(1-cos theta)=(1+cos theta)/(sin theta)

cos theta/(1+sin theta)=(1-sin theta)/cos theta

Prove that (1+cos theta)/(1-cos theta)+(1-cos theta)/(1+cos theta)=4cot theta*cos theta

Prove that ((1+cos theta)/(cos theta))((1-cos theta)/(cos theta))cosec^(2)theta=sec^(2)theta

cos theta cos2 theta cos3 theta=(1)/(4)

Solve ((1-sin theta)/(cos theta))