Home
Class 12
MATHS
Solve : cos 3x. Cos^(3)x+sin 3x.sin^(3)x...

Solve : `cos 3x. Cos^(3)x+sin 3x.sin^(3)x=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 3x \cdot \cos^3 x + \sin 3x \cdot \sin^3 x = 0 \), we can follow these steps: ### Step 1: Rewrite \( \cos 3x \) and \( \sin 3x \) Using the trigonometric identities: \[ \cos 3x = 4 \cos^3 x - 3 \cos x \] \[ \sin 3x = 3 \sin x - 4 \sin^3 x \] Substituting these into the equation gives: \[ (4 \cos^3 x - 3 \cos x) \cdot \cos^3 x + (3 \sin x - 4 \sin^3 x) \cdot \sin^3 x = 0 \] ### Step 2: Expand the equation Expanding the equation: \[ (4 \cos^6 x - 3 \cos^4 x) + (3 \sin^4 x - 4 \sin^6 x) = 0 \] ### Step 3: Combine like terms Rearranging gives: \[ 4 \cos^6 x - 4 \sin^6 x - 3 \cos^4 x + 3 \sin^4 x = 0 \] ### Step 4: Factor the equation We can factor out the common terms: \[ 4 (\cos^6 x - \sin^6 x) - 3 (\cos^4 x - \sin^4 x) = 0 \] Using the identity \( a^3 - b^3 = (a-b)(a^2 + ab + b^2) \) and \( a^2 - b^2 = (a-b)(a+b) \): \[ 4 (\cos^2 x - \sin^2 x)(\cos^4 x + \cos^2 x \sin^2 x + \sin^4 x) - 3 (\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x) = 0 \] ### Step 5: Factor out \( (\cos^2 x - \sin^2 x) \) Factoring out \( (\cos^2 x - \sin^2 x) \): \[ (\cos^2 x - \sin^2 x) \left( 4 (\cos^4 x + \cos^2 x \sin^2 x + \sin^4 x) - 3 \right) = 0 \] ### Step 6: Solve the factors 1. **First Factor**: \[ \cos^2 x - \sin^2 x = 0 \implies \cos^2 x = \sin^2 x \implies \tan^2 x = 1 \implies \tan x = \pm 1 \] This gives: \[ x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] 2. **Second Factor**: \[ 4 (\cos^4 x + \cos^2 x \sin^2 x + \sin^4 x) - 3 = 0 \] This simplifies to: \[ \cos^4 x + \sin^4 x + \frac{1}{4} = \frac{3}{4} \implies \cos^4 x + \sin^4 x = \frac{1}{2} \] Using the identity \( \cos^4 x + \sin^4 x = (\cos^2 x + \sin^2 x)^2 - 2 \cos^2 x \sin^2 x \): \[ 1 - 2 \cos^2 x \sin^2 x = \frac{1}{2} \implies 2 \cos^2 x \sin^2 x = \frac{1}{2} \implies \cos^2 x \sin^2 x = \frac{1}{4} \] This gives: \[ \sin^2 2x = 1 \implies 2x = \frac{\pi}{2} + n\pi \implies x = \frac{\pi}{4} + \frac{n\pi}{2} \] ### Final Solution Combining both results, we have: \[ x = \frac{\pi}{4} + n\pi \quad \text{and} \quad x = \frac{\pi}{4} + \frac{n\pi}{2} \]

To solve the equation \( \cos 3x \cdot \cos^3 x + \sin 3x \cdot \sin^3 x = 0 \), we can follow these steps: ### Step 1: Rewrite \( \cos 3x \) and \( \sin 3x \) Using the trigonometric identities: \[ \cos 3x = 4 \cos^3 x - 3 \cos x \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation cos 3 x cos^(3) x + sin 3 x sin^(3) x =0 , then x is equal to

Solve cos 7x= sin 3x

(Solve): cos6x+cos4x=sin3x+sin x

Solve 2 cos^2 x-3 sin x=0

Prove that sin 3x . sin^(3) x+cos 3 x . Cos^(3)x=cos^(3) 2x

sin4x=4sin x cos^(3)x-4cos x sin^(3)x

Solve 7 cos^(2)x+sin x cos x-3=0 .

Solve: cos 3x + sqrt3 sin 3x + sqrt2 lt 0 .

Solve sin 3x + cos 2 x =-2