Home
Class 12
MATHS
Solve : 1+2cosec x=-("sec"^(2)(x)/(2))/(...

Solve : `1+2cosec x=-("sec"^(2)(x)/(2))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
`x=2n pi-(pi)/(2), n in Z`

`1+2 cosec x =-("sec"^(2)(x)/(2))/(2)`
`rArr 1+2((1+"tan"^(2)(x)/(2))/(2tan.(x)/(2)))=-((1+"tan"^(2)(x)/(2)))/(2)`
`rArr 2tan.(x)/(2)+2+2"tan"^(2)(x)/(2)+tan.(x)/(2)+"tan"^(3)(x)/(2)=0`
`rArr "tan"^(3)(x)/(2)+2"tan"^(2)(x)/(2)+3tan.(x)/(2)+2=0`
`rArr (tan.(x)/(2)+1)("tan"^(2)(x)/(2)+tan.(x)/(2)+2)=0`
`tan.((x)/(2))+1=0`
`rArr tan.(x)/(2)=tan(-(pi)/(4))`
`rArr x = 2n pi-(pi)/(2), n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation: 1+2cos ecx=-(sec^(2)((x)/(2)))/(2)

"cosec"^(-1)((1+x^(2))/(2x))

If tan(x/2)=cosec x-sin x" then (1+sec^(2)(x)/(2))^(2)=

int (sec^(2)x)/(cosec^(2)x) dx

int (sec^(2) x)/(" cosec "^(2)x) dx

Solve 2 tan^(2)x + sec^(2) x= 2

(d)/(dx)(sec^(2)x*csc^(2)x)=

int sec^(2) x cosec^(2) x dx

int (sec^4x.cosec"^2x) dx=