Home
Class 12
MATHS
Solve : 2sin(3x+(pi)/(4))=sqrt(1+8sin2x....

Solve : `2sin(3x+(pi)/(4))=sqrt(1+8sin2x.cos^(2)2x),x in (0,2pi)`

Text Solution

Verified by Experts

The correct Answer is:
`x=(pi)/(12),(17pi)/(12)`

`2sin(3x+(pi)/(4))=sqrt(1+8sin 2x.cos^(2)2x)`
`rArr 2((sin3x + cos 3x)/(sqrt(2)))=sqrt(1+8 sin 2x cos 2x cos 2x)`
`rArr sqrt(2)(sin 3x + cos 3x)^(2)=1+2(sin 6x + sin 2x)`
`rArr 2(1+sin 6x)=1+2 sin 6x + 2 sin 2x`
`rArr 2sin 2x=1`
`rArr sin 2x = 1//2 = sin pi//6`
or `2x=n//pi+(-1)^(n)pi//6, n in Z`
or `x=(n pi)/(2)+(-1)^(n)(pi)/(12), n in Z`
`therefore x=(6n+(-1)^(n))(pi)/(pi)/(12)`
`therefore x=(pi)/(12),(5pi)/(12),(13pi)/(12),(17pi)/(12)`
But for `x=(5pi)/(12)` and `(13pi)/(12), sin(3x+(pi)/(4))lt 0`
`therefore x =(pi)/(12), (17pi)/(12)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin x+sin sqrt(((pi)/(8)(1-cos2x)^(2)+sin^(2)2x))=0

Solve cos2x>|sin x|,x in((pi)/(2),pi)

Solve the equation: cos^(2)[(pi)/(4)(sin x+sqrt(2)cos^(2)x)]-tan^(2)[x+(pi)/(4)tan^(2)x]=1

Solve (sqrt(5)-1)/(sin x)+(sqrt(10+2sqrt(5)))/(cos x)=8,x in(0,(pi)/(2))

1) int_(-(pi)/(2))^(pi)sin^(-1)(sin x)dx 2) int_(-(pi)/(2))^((pi)/(2))(-(pi)/(2))/(sqrt(cos x sin^(2)x))dx 3) int_(0)^(2)2x[x]dx

If f(x)=sqrt(1-sin2x), then f'(x) is equal to -(cos x+sin x), for x in((pi)/(4),(pi)/(2))cos x+sin x, for x in(0,(pi)/(4))-(cos x+sin x), for x in(0,(pi)/(4))cos x-sin x, for x in((pi)/(4),(pi)/(2))

int_(0) ^(pi//2) ((sin x +cos x )^(2))/sqrt(1+ sin 2x)dx =

Solve sin^(-1)x+sin^(-1)2x=(pi)/(3)

Prove that (i) "cos " ((pi)/(3) +x) =(1)/(2) ( " cos " x - sqrt(3) sin x) (ii) " sin " ((pi)/(4) + x) + " sin " ((pi)/(4)-x) =sqrt(2) " cos " x (iii) (1)/(sqrt(2)) " cos ((pi)/(4) + x) = (1)/(2) " (cos x - sin x) " (iv) " cos x + cos " ((2pi)/(3) +x) + " cos " ((2pi)/(3)-x) =0