Home
Class 12
MATHS
Solve : 2+tan x. cot.(x)/(2)+cot x. tan....

Solve : `2+tan x. cot.(x)/(2)+cot x. tan.(x)/(2)=0`.

Text Solution

Verified by Experts

The correct Answer is:
`x = 2n pi pm(2pi)/(3), n in Z`

`2+tan x.cot. (x)/(2)+cotx.tan.(x)/(2)=0` …(1)
Let `an x.cot.(x)/(2)=y`
Then equation (1) becomes
`2+(y+(1)/(y))=0`
`rArr y+(1)/(y)=-2`
On solving, we get
y = -1
or `tan x. cot.(x)/(2)=-1`
or `(sin x)/(cos x)(cos.(x)/(2))/(sin.(x)/(2))=-1`
or `(2sin.(x)/(2)cos.(x)/(2))/(cos x).(cos.(x)/(2))/(sin.(x)/(2))-1`
or `(2"cos"^(2)(x)/(2))/(cos x)=-1`
or `(1+cos x)/(cos x)=-1`
or `cos x= -(1)/(2)`
or `x=2n pi pm (2pi)/(3), n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: tan x = 3cot x .

int cot x tan^(3)[(x)/(2)]

Solve tan2x=-cot(x+(pi)/(3))

int(cot x-tan x)^(2)dx

int (tan x +cot x)^(2)dx

Solve quad tan2x=-cot(x+(pi)/(3))

Solve 3 tan x + cot x = 5 cosec x

cot x-2 cot 2x = tan x

sin 2x (tan x + cot x) = ?

Solve cot(x//2)-cosec (x//2)=cot x .