Home
Class 12
MATHS
If cos 2theta=(sqrt(2)+1)(cos theta-(1)/...

If `cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2)))`, then the general value of `theta(n in Z)`

A

`2n pi pm (pi)/(6)`

B

`n pi+(pi)/(12)`

C

`n pi+(7pi)/(36)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 2\theta = (\sqrt{2}+1)\left(\cos \theta - \frac{1}{\sqrt{2}}\right) \), we will follow these steps: ### Step 1: Substitute for \( \cos 2\theta \) Using the double angle formula for cosine, we know that: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] Substituting this into the equation gives: \[ 2\cos^2 \theta - 1 = (\sqrt{2}+1)\left(\cos \theta - \frac{1}{\sqrt{2}}\right) \] ### Step 2: Expand the right-hand side Now, we expand the right-hand side: \[ (\sqrt{2}+1)\left(\cos \theta - \frac{1}{\sqrt{2}}\right) = (\sqrt{2}+1)\cos \theta - \frac{\sqrt{2}+1}{\sqrt{2}} \] This simplifies to: \[ (\sqrt{2}+1)\cos \theta - (1 + \frac{1}{\sqrt{2}}) \] ### Step 3: Rearranging the equation Now, we rearrange the equation: \[ 2\cos^2 \theta - 1 = (\sqrt{2}+1)\cos \theta - (1 + \frac{1}{\sqrt{2}}) \] Bringing everything to one side gives: \[ 2\cos^2 \theta - (\sqrt{2}+1)\cos \theta + \left(1 + \frac{1}{\sqrt{2}} - 1\right) = 0 \] This simplifies to: \[ 2\cos^2 \theta - (\sqrt{2}+1)\cos \theta + \frac{1}{\sqrt{2}} = 0 \] ### Step 4: Solve the quadratic equation This is a quadratic equation in terms of \( \cos \theta \): \[ 2x^2 - (\sqrt{2}+1)x + \frac{1}{\sqrt{2}} = 0 \] where \( x = \cos \theta \). Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - \( a = 2 \) - \( b = -(\sqrt{2}+1) \) - \( c = \frac{1}{\sqrt{2}} \) Calculating the discriminant: \[ b^2 - 4ac = (\sqrt{2}+1)^2 - 4 \cdot 2 \cdot \frac{1}{\sqrt{2}} \] Calculating \( (\sqrt{2}+1)^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2} \) and \( 4 \cdot 2 \cdot \frac{1}{\sqrt{2}} = 4\sqrt{2} \): \[ 3 + 2\sqrt{2} - 4\sqrt{2} = 3 - 2\sqrt{2} \] ### Step 5: Finding the roots Now substituting back into the quadratic formula: \[ x = \frac{\sqrt{2}+1 \pm \sqrt{3 - 2\sqrt{2}}}{4} \] This gives us two values for \( \cos \theta \). ### Step 6: General solutions for \( \theta \) For each value of \( \cos \theta \), we find the general solutions: 1. If \( \cos \theta = \frac{1}{\sqrt{2}} \), then: \[ \theta = 2n\pi \pm \frac{\pi}{4}, \quad n \in \mathbb{Z} \] 2. If \( \cos \theta = \frac{1}{2} \), then: \[ \theta = 2n\pi \pm \frac{\pi}{3}, \quad n \in \mathbb{Z} \] ### Final Answer The general values of \( \theta \) are: \[ \theta = 2n\pi \pm \frac{\pi}{4} \quad \text{and} \quad \theta = 2n\pi \pm \frac{\pi}{3}, \quad n \in \mathbb{Z} \]

To solve the equation \( \cos 2\theta = (\sqrt{2}+1)\left(\cos \theta - \frac{1}{\sqrt{2}}\right) \), we will follow these steps: ### Step 1: Substitute for \( \cos 2\theta \) Using the double angle formula for cosine, we know that: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] Substituting this into the equation gives: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

cos2 theta-(sqrt(2)+1)(cos theta-(1)/(sqrt(2)))=0

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

If 4sin^(2)theta+2(sqrt(3)+1)cos theta=4+sqrt(3) then the general value of theta is

If (1-cos2 theta)/(1+cos2 theta)=3, then the general value of theta is

If sin theta=(1)/(sqrt(2)) and cos theta=(1)/(sqrt(2)), then cot theta=?

If cos theta = (1)/(sqrt2) " then " theta

If sin theta=(1)/(2) and cos theta=(sqrt(3))/(2) then the general value of theta which satisfies both the equations is

If sin theta = 1//2 and cos theta = -sqrt(3)//2 , then the general value of theta is