Home
Class 12
MATHS
The number of solutions of the equation ...

The number of solutions of the equation `16(sin^(5)x +cos^(5)x)=11(sin x + cos x)` in the interval `[0,2pi]` is

A

6

B

7

C

8

D

9

Text Solution

Verified by Experts

The correct Answer is:
A

`16 (sin^(5)x + cos^(5)x)-11(sin x + cos x) = 0`
`rArr (sin x + cos x) {16(sin^(4)x-sin^(3)x cos x + sin^(2)x cos^(2)x - sin x cos^(3) x + cos^(4) x)-11}=0`
`rArr (sin x + cos x){16(1-sin^()x cos^(2)x - sin x sin x cos x)-11}=0`
`rArr (sin x + cos x)(4 sin x cos x -1)(4 sin x cos x + 5) = 0`
As `4 sin x cos x + 5 ne 0` ,we have
`sin x + cos x = 0, 4 sin x cos x - 1 =0`
`rArr tan x = -1, sin 2x=(1)/(2)`
`rArr pi//12, 5pi//2, 9pi//12, 17pi//12, 21 pi//12`.
There are 6 solutions on `[0, 2pi]`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation 2(sin^(3)x+cos^(3)x)-3(sin x+cos x)+8=0 in the interval (0,4 pi) is

The number of solutions of the equation 2(sin^(3)x+cos^(3)x)-3(sin x+cos x)+8=0 in the interval (0,4 pi) is

The number of solutions of the equation 2(sin^(3)x+cos^(3)x)-3(sin x+cos x)+8=0 in the interval (0,4 pi) is

The number of solutions of the equation 2(sin^(3)x+cos^(3)x)-3(sin x+cos x)+8=0 in the interval (0,4 pi) is

Number of solutions of the equation sin 5x cdot cos 3x = sin 6x cdot cos 2x , In the interval [0, pi] is

The total number of solution of the equation sin^(4)x+cos^(4)x=sin x cos x in [0,2 pi] is :

The number of solutions of the equation sin^(5)x-cos^(5)x=(1)/(cos x)-(1)/(sin x)(sin x!=cos x)

Find the number of solutions of the equation sin5x cos3x=sin6x cos2x,x in[0,pi]