Home
Class 12
MATHS
If alpha < beta < gamma and sin gamma co...

If `alpha < beta < gamma` and `sin gamma cos alpha=1,` where `alpha,gamma in[pi,2 pi],` then the least integral value of `f(x) = | x - alpha| + | x - beta| + |x - gamma|` is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C

`sin gamma.cos alpha =1 alpha, gamma in [pi, 2pi]`
`therefore sin gamma = cos alpha =1`
`rArr gamma = pi//2, alpha = 2pi` (rejected) `(as alpha lt beta lt gamma)`
Other possibility is `sin gamma = cos alpha =-1 rArr gamma = 3 pi//2, alpha = pi`
`f(x)|_(min)=f(beta)=beta-alpha+0+gamma-beta`
`=gamma -alpha`
`=(3pi)/(2)-pi=(pi)/(2)`
`f(x)ge pi//2 rArr` least integral value of f(x) is 2.
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x to alpha) (alpha^x - x^alpha)/(x^alpha - alpha^alpha) = -1 then what is the value of alpha ?

If A(alpha)=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] then A(alpha)A(beta)

If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the matrix A^(2)(alpha) is

If f(alpha)=[[1,alpha,alpha^2],[alpha,alpha^2,1],[alpha^2,1,alpha]] then find the value of f(3^(1/3))

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 0

A=[(cos alpha,-sin alpha),(sin alpha,cos alpha)] and A+A^(T)=I , find the value of alpha .

If (4*alpha)/(alpha^(2)+1)>=1 and alpha+(1)/(alpha) is an odd integer then number of possible values of alpha is

If the roots of equation x^(3) + ax^(2) + b = 0 are alpha _(1), alpha_(2), and alpha_(3) (a , b ne 0) . Then find the equation whose roots are (alpha_(1)alpha_(2)+alpha_(2)alpha_(3))/(alpha_(1)alpha_(2)alpha_(3)), (alpha_(2)alpha_(3)+alpha_(3)alpha_(1))/(alpha_(1)alpha_(2)alpha_(3)), (alpha_(1)alpha_(3)+alpha_(1)alpha_(2))/(alpha_(1)alpha_(2)alpha_(3)) .