Home
Class 12
MATHS
solve the equation for x , 5^(1/2)+5^(1/...

solve the equation for `x , 5^(1/2)+5^(1/2 + log_5 sinx) = 15^(1/2 + log_15 cosx)`

A

50

B

100

C

200

D

400

Text Solution

Verified by Experts

The correct Answer is:
A

`5^((1)/(2))+5^((1)/(2)+log_(5)(sin x))=15^((1)/(2)+log_(5)cos x)`
`rArr 5^((1)/(2))5^((1)/(2)).5^(log_(5)(sin x))=15^(1//2).15^(log_(15)cos x)`
`rArr 1+sin x = sqrt(3)cos x`
`rArr (sqrt(3))/(2)cos x-(sin x)/(2)=(1)/(2)`
`rArr cos(x + (pi)/(6))=cos.(pi)/(3)`
`rArr x + (pi)/(6)=2n pi pm(pi)/(3), n in Z`
`rArr x = 2n pi-(pi)/(2), 2n pi + (pi)/(6), n in Z`
But we must have sin `x, cos x gt 0`
`therefore x = 2n pi + pi//6, n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

solve the equation for x,5^((1)/(2))+5^((1)/(2))+log_(5)sin x=15^((1)/(2))+log_(15)cos x

Solve the equation 3cdotx^(log5^2)+2^(log5^x)=64 .

Solve the equation log(x^2-5)-logx=log4

Solve the equation log_((log_(5)x))5=2

Solve the equation log_(3)(5+4log_(3)(x-1))=2

Solve the equation log_(4)(2x^(2)+x+1)-log_(2)(2x-1)=1

The equation 5^(1+log_(5)cosx)=5/2 has

Number of solutions of the equation log_(10) ( sqrt(5 cos^(-1) x -1 )) + 1/2 log_(10) ( 2 cos^(-1) x + 3) + log_(10)sqrt5 = 1 is

solve the equation x^((3)/(4)(log_(2)x)^(2)+log_(2)x-(5)/(4))=sqrt(2)