Home
Class 12
MATHS
The number of solutions of equation sin....

The number of solutions of equation `sin.(5x)/(2)-sin.(x)/(2)=2` in `[0,2pi]` is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A

Given equation can hold only if `sin.(5x)/(2)-1` and `sin.(x)/(2)=-1`
i.e. `(5x)/(2)=2n pi +(pi)/(2)` and `(x)/(2)=2p pi -(pi)/(2)` (n `p in I`)
For some possible p and n if there exists a solution, we must have
`10 p pi-(5pi)/(2)=2n pi + (pi)/(2)`
oe `10 p - 2n = 3`
L.H.S. is even, R.H.S. is odd
Hence, not possible for any p and n.
Promotional Banner

Similar Questions

Explore conceptually related problems

Am . The number of solutions of the equation (sin x)^(2sin x)=1,in[0,2 pi] is :

the number of solution of the equation 1+sin x*sin^(2)((x)/(2))=0, in [-pi,pi], is

The number of solutions of equations sin2x+cos2x+sin x+cos x+1=0 in [0,2 pi] is

Number of solutions of equation sin x.sqrt(8cos^(2)x)=1 in [0, 2pi] are

The number of solution x of the equation sin (x+x^(2))- sin(x^(2))= sin x in the interval [2,3] is

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

The number of solution of equations sin2x+cos2x+sin x+cos x+1=0 in [0,2 pi]

The number of solutions of the equation (3+cos x)^(2)=4-2sin^(8)x" in "[0, 9pi) is equal to