Home
Class 12
MATHS
Find the general solution of the trignom...

Find the general solution of the trignometric equation `3^(1/2+log_(3)(cosx+sinx))-2^(log_(2)(cosx-sinx))=sqrt(2)`

A

`2n pi+(5pi)/(4)`

B

`n pi-(pi)/(4)`

C

`n pi+(-1)^(n)(pi)/(4)`

D

`2n pi+(pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A

`because A.M. ge G.M. therefore (2^(sin x)+2^(cos x))/(2)ge sqrt(2^(sin x).2^(cos x))`
`therefore 2^(sin x)+2^(cos x)ge 2. sqrt(2^(sin x + cos x))`
But minimum value of cos x + sin x is `- sqrt(2)`
`thereofre 2^(sin x)+2^(cos x)ge 2. sqrt(2^(-sqrt(2)))=2^(1-(1)/(sqrt(2)))`
But the given equation is `2^(sin x)+2^(cos x)=2^(1-(1)/(sqrt(2)))`, which can hold only if `2^(sin x)=2^(cos x)=2^(-(1)/(sqrt(2)))`
`rArr x = 2n pi + (5pi)/(4), n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the general solution of : cosx+sinx=1

Find the general solution of : cosx-sinx=-1

Find the general solution of : sqrt(3)cosx-sinx=1

General solution of cosx-sinx=1 is

Find intcos2x*log((cosx+sinx)/(cosx-sinx))dx

The solution of the equation log _( cosx ^(2)) (3-2x) lt log _( cos x ^(2)) (2x -1) is:

Find the principal solutions of each of the following equations : (i) sinx=(1)/(2) (ii) cosx=(1)/(sqrt(2))

Find the solutions of the equation , log_(sqrt2sinx)(1+cosx)=2 in the interval x in[0,2pi].

The most general solution of the equation sqrt3cosx +sinx = sqrt2 is :

If n is any integer, then the general solution of the equation cosx-sinx=(1)/(sqrt(2)) is