Home
Class 12
MATHS
The values of x which satisfy 18(sin^(-1...

The values of x which satisfy `18(sin^(-1)x)^(2)-9pi sin^(-1)x +pi^(2)lt 0` and `18(tan^(-1)x)^(2)-9pi tan^(-1)x + pi^(2)lt 0` simultaneously are

A

`((sqrt(3))/(3),(sqrt(3))/(2))`

B

`((sqrt(3))/(2),1)`

C

`((1)/(3),(sqrt(3))/(2))`

D

`((1)/(sqrt(3)),sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
A

`(sin^(-1)x)^(2)-(pi)/(2)sin^(-1)x+(pi^(2))/(18)lt 0`
`rArr (sin^(-1)x-pi//3)(sin^(-1)x-pi//6)lt 0`
`rArr (pi)/(6)lt sin^(-1)x lt(pi)/(3)`
`rArr (1)/(2)lt x lt (sqrt(3))/(2)` ….(1)
Similarly
`(pi)/(6)lt tan^(-1)x lt (pi)/(3)`
`rArr (1)/(sqrt(3))lt x lt sqrt(3)` ....(2)
From (1) and (2), we get `(1)/(sqrt(3))lt x lt (sqrt(3))/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is

Statement-1: If alpha,beta roots of the equation 18(tan^(-1)x)^(2)-9pi tan^(-1)x+pi^(2)=0 then alpha+beta =(4)/sqrt(3) Statement-2: sec^(2)cos^(-1)(1/4)+cosec^(2)sin^(-1)(1/5)=41

For x in (0,(pi)/(2)) prove that "sin"^(2) x lt x^(2) lt " tan"^(2) x

If x_(1),x_(2) in (0,(pi)/(2)) , then (tan_(x_(2)))/(tanx_(1)) is (where x_(1)lt x_(2) )

STATEMENT -1 : tan^(-1)x=sin^(-1)yrArry in (-1,1) and STATEMENT -2 : -pi/2 lt tan^(-1)x lt pi/2

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

The value of the definite integral (1)/(pi)int_((pi)/(2))^((5 pi)/(2))(e^(tan^(-1)(sin x)))/(e^(tan^(-1)(sin x)+e^(tan^(-1)(cos x)))dx is )