Home
Class 12
MATHS
If f(x)=sin^(-1)(cosec(sin^(-1)x))+cos^(...

If `f(x)=sin^(-1)(cosec(sin^(-1)x))+cos^(-1)(sec(cos^(-1)x))`, then f(x) takes

A

exactly two values

B

one value

C

undefined

D

infinite values

Text Solution

Verified by Experts

The correct Answer is:
B

Clearly f(x) is defined only for `x = pm 1`
and `f(1)=f(-1)=(pi)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

"cosec"(sin^(-1)x+cos^(-1)x)

sin(sec^(-1)x+"cosec"^(-1)x)

f_(1)(x)=sin^(-1)(cos(sin^(2)x)),f_(2)(x)=cos^(-1)(sin(cos^(2)x)),f_(3)(x)=sin^(-1)(cos^(2)x)),f_(4)(x)=cos^(-1)(sin^(2)x)* Then which of the following is/are correct?

Range of f(x)=sin^(-1)x+sec^(-1)x is

If xepsilon(0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(cos(cos^(-1)x)=sin(sin^(-1)x)))} , then sum_(r=2)^(10)f(1/r) is

f(x)=sin^(-1)(sin x), g(x)=cos^(-1)(cos x) , then :

If sec^(-1)x=cosec^(-1) y then cos^(-1)(1/x)+cos^(-1)(1/y) =

Thr domain of the funtion f(x)=cos^(-1)(sec(cos^(-1)x))+sin^(-1)(csc(sin^(-1)x)) is

The domain and range of f(x)=sin^(1)x+cos^(-1)x+tan^(-1)x+cot^(-1)x+sec^(-1)x+cos ec^(-1)x respectively are

The domain of f(x)=sin^(-1)x+cos ec^(-1)x is