Home
Class 12
MATHS
The number of ordered triplets (x,y,z) s...

The number of ordered triplets `(x,y,z)` satisfy the equation `(sin^(- 1)x)^2=(pi^2)/4+(sec^(- 1)y)^2+(tan^(- 1)z)^2`

A

2

B

4

C

6

D

8

Text Solution

Verified by Experts

The correct Answer is:
A

`(sin^(-1)x)in[-(pi)/(2),(pi)/(2)]`
`therefore (sin^(-1)x)^(2)le (pi^(2))/(4)`
`(sec^(-1)y)^(2), (tan^(-1)z)^(2)ge 0`
`therefore R.H.S. ge (pi^(2))/(4)`
`therefore (sin^(-1)x)^(2)=(pi^(2))/(4)`
`therefore (sex^(-1)y)^(2)+(tan^(-1)z)^(2)=0`
or `sec^(-1)y=tan^(-1)z=0`
`therefore sin^(-1)x = pm(pi)/(2), y = 1, z = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are natural numbers such that cot ^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x,y,z) that satisfy the equation is 0 (b) 1 (c) 2 (d) Infinite solutions

Number of ordered pairs (a,x) satisfying the equation sec^(2)(a+2)x+a^(2)-1=0;-pi

The number of ordered pair(s) (x, y) of real numbers satisfying the equation 1+x^(2)+2x sin(cos^(-1)y)=0 , is :

The number of ordered pair (x, y) satisfying the equation sin^(2) (x+y)+cos^(2) (x-y)=1 which lie on the circle x^(2)+y^(2)=pi^(2) is _________.

Let xyz=105 where x,y,z in N. Then number of ordered triplets (x,y,z) satisfying the given equation is

Let N be the number of triplets (x,y,z) where x,y,z in[0,2 pi] satisfying the inequality (4+sin4x)(2+cot^(2)-y)(1+sin^(4)+z)<12sin^(2)-z Find the value of (N)/(2)

Find the number of values of x in [-pi/4, pi/4] satisfying the equation sin^(2) (2 cos^(-1) (tan x))=1

Find number of triplets (x,y,z) satisfying the system (9x^(2))/(1+9x^(2))=(3)/(2)y,(9y^(2))/(1+9y^(2))=(3)/(2)z,(9z^(2))/(1+9z^(2))=(3)/(2)x

The number of triple satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi is