Home
Class 12
MATHS
The range of function f(x)=sin^(-1)(x-sq...

The range of function `f(x)=sin^(-1)(x-sqrt(x))` is equal to

A

`["sin"^(-1)(1)/(4),(pi)/(2)]`

B

`["sin"^(-1),(pi)/(2)]`

C

`[-"sin"^(-1)(1)/(4),(pi)/(2)]`

D

`[-"sin"^(-1)(1)/(2),(pi)/(2)]`

Text Solution

Verified by Experts

The correct Answer is:
C

We have `f(x)=sin^(-1)(x-sqrt(x))`
`=sin^(-1)((sqrt(x)-(1)/(2))^(2)-(1)/(4))`
`therefore` Range of f(x) is `[sin^(-1)((-1)/(4)), sin^(-1)1]`
`=[-sin^(-1)(1)/(4),(pi)/(2)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Range ofthe function f(x)=(ln x)/(sqrt(x))

The range of the function f(x)=(1)/(sqrt(4+3cos x)) is

Range of the function f(x)=(ln x)/(sqrt(x)) is

The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

Range of the function f(x)=(1+x^(2))/(x^(2)) is equal to

The range of f(x)=sin^(-1)x+sqrt(x) is

The range of the function f(x) = (1)/(2-sin 3x) is

Domain of function f(x)=(1)/(sin sqrt([x]-x)) is

The range of the function f(x)=2|sin x|-3|cos x| is

Range of the function f (x)= sqrt(x ^(2) + x +1) is equal to