Home
Class 12
MATHS
Maximum value of function f(x)=(sin^(-1)...

Maximum value of function `f(x)=(sin^(-1)(sinx)^(2)-sin^(-1)(sinx)` is:

A

`(pi)/(4)[pi+2]`

B

`(pi)/(4)[pi-2]`

C

`(pi)/(2)[pi+2]`

D

`(pi)/(2)[pi-2]`

Text Solution

Verified by Experts

The correct Answer is:
A

`y=(sin^(-2)(sin x))^(2)-sin^(-1)(sin x)`
`=(sin^(-1)(sin x)-(1)/(2))^(2)-(1)/(4)`
For maximum value of `y, sin^(-1)(sin x)=-(pi)/(2)`
`rArr y =((pi)/(2)+(1)/(2))^(2)-(1)/(4)=(pi)/(4)(pi+2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(sinx)=x if

The function f(x)=sin^(-1)(sinx) , is

find the maximum value of f(x) = (sin^(-1) (sin x))^(2) - sin^(-1) (sin x)

The maximum value of function f(x)=sinx(1+cosx),xiniR is

Least value of the function f(x)= e^(sinx-2sin^(2)x is

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

Maximum value of f(x)=sinx+cosx is :

The function f(x)=log((1+sinx)/(1-sinx)) is

The function f(x)=((1)/(2))^(sinx) , is