Home
Class 12
MATHS
sin(1/4sin^(- 1)(sqrt 63/8)i s...

`sin(1/4sin^(- 1)(sqrt 63/8)i s`

A

`(1)/(2)`

B

`(1)/(3)`

C

`(1)/(2sqrt(2))`

D

`(1)/(5)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have sin `((1)/(4)"sin"^(-1)(sqrt(63))/(8))`
Let `"sin"^(-1)(sqrt(63))/(8)=theta`
`therefore (sqrt(63))/(8)=sin theta`
`rArr cos. theta = (1)/(8)`
`therefore cos.(theta)/(2)=sqrt((1+cos theta)/(2))=sqrt((1+(1)/(8))/(2))=(3)/(4)`
`rArr = sin.(theta)/(4)=sqrt((1-cos.(theta)/(2))/(2))=sqrt((1-(3)/(4))/(2))=(1)/(2sqrt(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin(1/4sin^(-1)(sqrt(63))/8) is 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

sin((1)/(4)sin^(-1)((sqrt(63))/(8))is

The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

Evaluate tan(1/4*Sin^-1(sqrt(63)/8))

sin(2"sin"^(-1)sqrt((63)/(65))) is equal to

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

Evaluate the following (i) sin ( pi/2 - sin^(-1) ( (-1)/2)) (ii) sin(pi/2 - sin^(-1)(- sqrt3/2))

Prove that: (9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2sqrt(2))/3)