Home
Class 12
MATHS
The algebraic expression for f(x)=tan(si...

The algebraic expression for `f(x)=tan(sin^(-1)(cos("tan"^(-1)(x)/(2))))` is

A

`(2)/(x)`

B

`(x)/(2)`

C

`(1)/(x)`

D

`(2)/(|x|)`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `"tan"^(-1) (x)/(2)=theta`
`rArr tan. theta=(x)/(2)`
`rArr cos("tan"^(-1)(x)/(2))=cos. theta=(2)/(sqrt(4+x^(2)))`
`rArr f(x)=tan["sin"^(-1)(2)/(sqrt(4+x^(2)))]=(2)/(x)`
If `x gt 0`, then `f(x)=tan("tan"^(-1)(2)/(x))=(2)/(x)`
If `x lt 0`, then `f(x)=tan(tan^(-1)((-2)/(x)))=(-2)/(x)`
`rArr f(x)=(2)/(|x|)`
Promotional Banner

Similar Questions

Explore conceptually related problems

tan(sin^(-1)x+cos^(-1)x)

sin{cot^(-1)[cos(tan^(-1)x)]}=....

sin^(-1)((1-tan^(2)x)/(1+tan^(2)x))

Range of sin^(-1)x+cos^(-1)x+tan^(-1)x is

The range of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x is

If f(x)=tan(tan^(-1)x^(2))+sin(sin^(-1)x) then

sin {cot^(-1)[tan (cos^(-1)x)]=

If A=sin[cot^(-1){cos(tan^(-1)x)}], then

Find the value of expression: sin(2tan^(-1)((1)/(3)))+cos(tan^(-1)2sqrt(2))