Home
Class 12
MATHS
The solution set of the inequality tan^(...

The solution set of the inequality `tan^(-1)x+sin^(-1)x ge (pi)/(2)` is

A

`[-1,1]`

B

`[sqrt((sqrt(5)-1)/(4)),1]`

C

`[sqrt((sqrt(5)-1)/(2)),1]`

D

`[(sqrt(5)-1)/(2),1]`

Text Solution

Verified by Experts

The correct Answer is:
C

`tan^(-1)x + sin^(-1)x ge (pi)/(2), x in [-1,1]`
`rArr tan^(-1)x ge (pi)/(2) -sin^(-1)x`
`rArr tan^(-1)x ge cos^(-1)x`
`rArr x ge "tan"^(-1)(sqrt(1-x^(2)))/(x)`
`rArr x ge (sqrt(1-x^(2)))/(x)`
`x^(4)ge 1-x^(2)`
`rArr x^(4)+x^(2)-1ge 0`
`rArr x in [sqrt((sqrt(5)-1)/(2)),1]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solution set for the inequality cos^-1x lt sin^-1x

The solution set of the equation sin^(-1)x=2 tan^(-1)x is

The solution set of the inequality (tan^(-1)x)^(2) le (tan^(-1)x) +6 is

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

The solution of inequality 3tan^(2)x>=4sin^(2)x is

The solution set of the inequation |x+1|

The solution of the inequality (tan^(-1)x)^(2)-3tan^(-1)x+2>=0 is

Find the solution set of the inequality sin x>(1)/(2)