Home
Class 12
MATHS
The sum of all possible values of x sati...

The sum of all possible values of x satisfying the equation `sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2)` is

A

`-2`

B

`-1`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
D

`sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2)`
`rArr 3x-4x^(3)=4x^(3)-3x`
`rArr 8x^(3)-6x=0`
`rArr 2x(4x^(2)-3)=0`
`rArr x=0, x = pm (sqrt(3))/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

The sum of all real values of x satisfying the equation (x^(2)-5x+5)^(x^(2)+4x-60)=1 is: (1)3(2)-4(3)6(4)5

Number of values of x satisfying the equation cos(4pi/3-cos^-1x)=x is

The sum of the values of X satisfying the equation |x^(2)+4x+3|+2x+5=0 is :

The number of real values of x satisfying the equation 3 sin^(-1)x +pi x-pi=0 is/are :

The smallest positive value of x (in radians) satisfyinig the equation (sin x)(cos^(3)x)-(cos x)(sin^(3)x)=(1)/(4)

Sum of all possible values of 'x' which satisfy the equation log_(3)(x – 3) = log_(9)(x – 1) is :