Home
Class 12
MATHS
If maximum and minimum values of |sin^(-...

If maximum and minimum values of `|sin^(-1)x|+|cos^(-1)x|` are M and m, then M+m is

A

`pi//2`

B

`pi`

C

`2pi`

D

`3pi`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)={{:(sin^(-1)x+cos^(-1)x,,0le x le 1),(cos^(-1)x-sin^(-1)x,,-1le x le x lt 0):}`
`f(x)={{:(pi//2",",0le x le 1),((pi)/(2)-2sin^(1)x",",-1le x lt 0):}`
For `-1 le x le 0`
`-pi//2 le sin^(-1)x le 0`
`therefore -pi le 2 sin^(-1)x le 0`
`therefore 0 le -2 sin^(-1)x le pi`
`therefore pi//2 le pi//2 -2 sin^(-1) x le 3pi//2`
`therefore` Max. value `= 3pi//2`
and Min. value `= pi//2`
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

If the maximum and minimum value of (sin x-cos x-1)(sin x+cos x-1)AA x in R is M and m the n find value of (M-4m)

Real number x,y satisfies x^(2)+y^(2)=1. If the maximum and minimum value of the expression z=(4-y)/(7-x) are M and m respectively,then find the value (2M+6m)

Find the maximum and minimum values of (sin^(-1)x)^(3)+(cos^(-1)x)^(3), where -1<=x<=1

Let the maximum and minimum value of the expression 2 cos^(2) theta + cos theta + 1 is M and m respectively, then the value of [M/m] is (where [.] is the greatest integer function)

If m and M are the minimum and the maximum values of 4+(1)/(2)sin^(2)2x-2cos^(4)x,x in R then

If f(x)=sin^(6)x+cos^(6)x and M_(1) and M_(2) be the maximum and minimum values of f(x) for all values of t then M_(1)-M_(2) is equal to

If M and m are maximum and minimum value of f(x)=cos^(2)x-4cos x+7,x in R respectively then find (M-m)

If minimum and maximum values of f(x)=2|x-1|+|x-3|-3|x-4| are m and M respectively then (m+M) equals