Home
Class 12
MATHS
The value of x satisfying sin^(-1)(sqrt(...

The value of x satisfying `sin^(-1)(sqrt((3x-1)/(25)))+sin^(-1)(sqrt((3x+1)/(25)))=(pi)/(2)` lies in the interval

A

(1,2)

B

(2,3)

C

(3,4)

D

(4,5)

Text Solution

Verified by Experts

The correct Answer is:
D

`sin^(-1)(sqrt((3x-1)/(25)))+sin^(-1)(sqrt((3x + 1)/(25)))=(pi)/(2)`
`rArr sin^(-1)(sqrt((3x-1)/(25)))=(pi)/(2)-sin^(-1)(sqrt((3x+1)/(25)))=cos^(-1)(sqrt((3x+1)/(25)))`
`rArr sin^(-1)(sqrt((3x-1)/(25)))=sin^(-1)(sqrt(1-(3x+1)/(25)))`
`rArr sin^(-1) (sqrt((3x-1)/(25)))=sin^(-1)(sqrt((24-3x)/(25)))`
`rArr (3x-1)/(25)=(24-3x)/(25)`
`rArr x = (25)/(6)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The vaue of x satisfying sin^(-1)(x)+sin^(-1)(sqrt(15)x)=(pi)/2 is

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

sin^(-1)sqrt(x)+sin^(-1)sqrt(1-x)=(pi)/(2)

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

The value of sin sqrt(x^(2) - pi^(2)/36) lies in the interval

The value of x in (0,(pi)/(2)) satisfying (sqrt(3)-1)/(sin x)+(sqrt(3)+1)/(cos x)=4sqrt(2) is / are

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is