Home
Class 12
MATHS
The number of integral values in the ran...

The number of integral values in the range of the function `f(x)=sin^(-1)x-cot^(-1)x+x^(2)+2x +6` is

A

10

B

11

C

12

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of integral values in the range of the function \( f(x) = \sin^{-1}(x) - \cot^{-1}(x) + x^2 + 2x + 6 \), we will follow these steps: ### Step 1: Rewrite the function We know that \( \cot^{-1}(x) + \tan^{-1}(x) = \frac{\pi}{2} \). Therefore, we can rewrite \( f(x) \) as: \[ f(x) = \sin^{-1}(x) - \left(\frac{\pi}{2} - \tan^{-1}(x)\right) + x^2 + 2x + 6 \] This simplifies to: \[ f(x) = \sin^{-1}(x) + \tan^{-1}(x) + x^2 + 2x + 6 - \frac{\pi}{2} \] ### Step 2: Determine the domain of the function The domain of \( \sin^{-1}(x) \) is \( x \in [-1, 1] \). Therefore, the domain of \( f(x) \) is also \( x \in [-1, 1] \). ### Step 3: Find the minimum and maximum values of \( f(x) \) To find the minimum and maximum values of \( f(x) \) within the domain, we will evaluate \( f(x) \) at the endpoints of the interval: 1. **Evaluate at \( x = -1 \)**: \[ f(-1) = \sin^{-1}(-1) + \tan^{-1}(-1) + (-1)^2 + 2(-1) + 6 - \frac{\pi}{2} \] \[ = -\frac{\pi}{2} - \frac{\pi}{4} + 1 - 2 + 6 - \frac{\pi}{2} \] \[ = 5 - \frac{5\pi}{4} \] 2. **Evaluate at \( x = 1 \)**: \[ f(1) = \sin^{-1}(1) + \tan^{-1}(1) + (1)^2 + 2(1) + 6 - \frac{\pi}{2} \] \[ = \frac{\pi}{2} + \frac{\pi}{4} + 1 + 2 + 6 - \frac{\pi}{2} \] \[ = 9 + \frac{\pi}{4} \] ### Step 4: Determine the range of \( f(x) \) The minimum value of \( f(x) \) occurs at \( x = -1 \): \[ f(-1) = 5 - \frac{5\pi}{4} \] The maximum value of \( f(x) \) occurs at \( x = 1 \): \[ f(1) = 9 + \frac{\pi}{4} \] Thus, the range of \( f(x) \) is: \[ \left[ 5 - \frac{5\pi}{4}, 9 + \frac{\pi}{4} \right] \] ### Step 5: Calculate the integral values in the range To find the number of integral values in the range: 1. Calculate \( 5 - \frac{5\pi}{4} \): - Approximating \( \pi \approx 3.14 \): \[ 5 - \frac{5 \times 3.14}{4} \approx 5 - 3.925 = 1.075 \] 2. Calculate \( 9 + \frac{\pi}{4} \): - Approximating \( \frac{\pi}{4} \approx 0.785 \): \[ 9 + 0.785 \approx 9.785 \] The integral values in the range from approximately \( 1.075 \) to \( 9.785 \) are \( 2, 3, 4, 5, 6, 7, 8, 9 \). ### Conclusion The total number of integral values in the range of \( f(x) \) is \( 8 \).

To find the number of integral values in the range of the function \( f(x) = \sin^{-1}(x) - \cot^{-1}(x) + x^2 + 2x + 6 \), we will follow these steps: ### Step 1: Rewrite the function We know that \( \cot^{-1}(x) + \tan^{-1}(x) = \frac{\pi}{2} \). Therefore, we can rewrite \( f(x) \) as: \[ f(x) = \sin^{-1}(x) - \left(\frac{\pi}{2} - \tan^{-1}(x)\right) + x^2 + 2x + 6 \] This simplifies to: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of integral values in the range of the function f(x)=cot^(-1)x+(1)/(2)cos^(-1)x is

Range of the function f(x)=sin^(-1)x+2tan^(-1)x+x^(2)+4x+3 is

The number of integral values in the range of f(x)=sin^(-1)((x^(2))/(x^(2)+1)) is

The range of the function f(x)=sin^(-1)(log_(2)(-x^(2)+2x+3)) is

range of the function f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x

The range of the function f(x)=2|sin x|-3|cos x| is

Find the range of the function f(x)=(x)/(1+x^(2))

The range of the function f(x)=(x^(2))/(x^(4)+1) is

The range of the function f(x)=x^(2)+(1)/(x^(2)+1) is

The range of the function sin^(-1)(x^(2)+2x),x>0 is